调 节
一、神经系统
神经系统是起主导作用的功能调节系统,包括外周、中枢两大部分。外周神经系统分躯体神经与植物性神经两部分;中枢神经系统由脑和脊髓两部分组成。
1.外周神经系统
从脑和脊髓伸出成对神经,使身体各处的感受器和中枢神经系统联系起来。这些成对的脑神经和脊神经组成了周围神经系统。周围神经系统的细胞体一般都位于中枢神经系统,即脑和脊髓,或位于脊髓外面的脊神经节。位于脊神经节的细胞体都是感觉神经元的细胞体,即传人神经元的细胞体。
(1)脑神经
人有12对脑神经,主要分布于头部的感官、肌肉和腺体。爬行类和鸟类也有12对脑神经。鱼类和两栖类只有10对。这些神经有些是由感觉神经纤维组成的,如第工对嗅神经,起于鼻腔嗅黏膜的嗅觉细胞,第Ⅱ对视神经,起于眼球后的视网膜,第Ⅷ对听神经,连于耳蜗(听)和半规管(平衡);有些是由感觉神经纤维和运动神经纤维混合组成的,如第V对三叉神经,感觉纤维分布在牙齿和颜面皮肤,运动纤维分布到咀嚼肌。第X对迷走神经,也是混合神经,分布在大动脉、心、肺、胃、食管等器官,是副交感神经系统的重要部分。
(2)脊神经
脊神经都是既含感觉神经纤维又含运动神经纤维的混合神经。人的脊神经共31对,依次分配到身体一定部位的感受器和效应器。每一脊神经从脊髓出来时都有背腹2个“根”,两根相合为一,即成脊神经(参见图1-3-30)。感觉神经纤维(传人纤维)从背根进入脊髓。背根上有脊神经节,传人神经细胞体位于脊神经节。运动神经纤维(传出纤维)从腹根出脊髓,细胞体(运动神经元)位于脊髓的灰质。
各脊神经的背腹根会合后,又分成3支,即背支、腹支和自主神经支。背支包括感觉和运动纤维,分配到身体背部皮肤和肌肉;腹支也包括感觉和运动纤维,分配到身体腹部及两
侧的皮肤和肌肉。自主神经支则分配到脏器,属于自主神经系统。
2.中枢神经系统
中枢神经系统由脑和脊髓两部分组成。
(1)脊髓
脊髓前端与延髓相连,后端终止于脊柱的末端。每一椎骨的椎体背部是一拱门状构造,称为神经弓,各椎骨的神经弓顺序相接,形成一管,称椎管,脊髓就位于这个管中。
脊髓的中央部分在脊髓横切面上成蝴蝶形,称为灰质(图1—3—30)。细胞体和突触都位于灰质。灰质的左右两“翅”又可分为背角和腹角两部分。感觉神经元的细胞体位于脊髓外面的脊神经节中,它们的纤维从背角进入灰质。运动神经的细胞体位于腹角,它们的轴突从腹角伸出,和进入背角的感觉神经组成脊神经,分布到身体各部。除运动神经元外,脊髓中所有其他神经元都是中间神经元。中间神经元及其轴突、树突,都位于灰质中。
灰质之外是白质。白质中没有细胞体,主要是成束的神经纤维。白质之所以白,是由于有髓鞘纤维存在乙髓鞘纤维进入灰质的部分都是末端,都没有髓鞘,所以灰质不是白色的。
脊髓有两个功能:一是传导上下神经冲动。周围神经(脊神经)传来的冲动经脊髓而上行人脑,脑的信息也经脊髓、脊神经而达到身体各部。二是作为反射中心(某些反射的初级中枢)。反射弧是由位于脊髓外面的感觉神经元及其传人纤维,和位于脊髓内面的运动神经元及其传出纤维等构成的。
脊髓是交感神经和部分副交感神经的发源地,是调节内脏活动的初级中枢.,如脊髓可完成基本的血管张力反射、发汗反射、排尿反射、排便反射、勃起反射等,但这些反射功能是初级的。
(2)脑
脑的发育和进化如表1—3—2所示:
脑包括大脑、间脑、中脑、小脑、脑桥、延髓。大脑分为两半球,包括大脑皮质与基底神经节。间脑包括丘脑与下丘脑,脑桥、中脑、延髓合称脑干(图1-3-31)。
①延髓 延髓是脑的最后部分,和脊髓相连接。延髓十分重要,含有多种“活命中枢”,如呼吸中枢、心搏和血压中枢以及控制吞咽、咳嗽、喷嚏和呕吐、唾液分泌等反射活动的整合中枢等。
②脑桥 在哺乳类,小脑下面,中脑和延髓之间有一膨大部分,即是脑桥。脑桥主要是由联系延髓及其前面各部分的神经束所组成,是脑各部分联系和整合的环节。脑桥中有横向排列的神经束,和小脑相通,可协调小脑左右两半球的活动。脑桥中还含有呼吸中枢,有调节呼吸的作用。
③小脑 小脑的功能主要是调节各肌肉的活动,以保持动物身体的正常姿势。脊椎动物各纲小脑发育的程度和动物活动的程度大致是相关的,如圆口类、两栖类和爬行类的小脑是小而不发达的。小脑如受到损伤或被摘除,肌肉就失去了协调的运动,身体也将失去平衡。婴儿仰卧床上,手脚乱动,但不能完成一个准确而有目标的运动,这是因为婴儿小脑机能尚未完善。
④中脑 在鱼类和两栖类,中脑很重要,各种感觉信息都是从感觉神经进入中脑,在中脑整合之后,由中脑作出决定,发布指令,通过运动神经而达效应器。哺乳类的新皮质,取代了中脑的许多功能,因而中脑不发达。哺乳类中脑中有视觉和听觉的反射中心。
⑤下丘脑 下丘脑位于丘脑下面,又称丘脑下部。下丘脑是内脏机能的重要控制中心。刺激下丘脑的不同部分可引起饥饿、口渴、冷、热、疼痛等感觉。下丘脑还有调节体温和控制喜、怒、哀、乐等情绪的功能。
下丘脑还有分泌激素的功能,催产素和加压素就是下丘脑分泌的。此外,下丘脑还能分泌多种“释放因子”来控制内分泌腺的活动,如促性腺激素释放因子、促甲状腺,激素释放因子、促肾上腺皮质激素释放因子等。
一切高等动物都有一个睡眠和清醒相间出现的节律,这个节律是由,下丘脑控制的。
⑥边缘系统 下丘脑不是脑中惟一控制情绪的部分。脑桥前部、大脑和丘脑的边缘部分(包括海马体和杏仁体等)也有控制情绪的功能。这些部分合称为边缘系统。边缘系统没有明确的界限,不是一个解剖学单位,只是一个有一定功能的部分。它的神经元将下丘脑和大脑皮质联系起来,其活动也是与情绪,如激动、欢快、郁闷、性行为、生物节律等有关。此外,边缘系统中的海:马体等,还与记忆,包括短期记忆和长期记忆的建立有关。
⑦网状激活系统 在丘脑、中脑、延髓和脑桥(延髓前方)的深部,有由神经细胞体和纤维组成的一个很复杂的神经网,称为网状激活系统。无论是传人大脑的感觉通路,还是从大脑传出的运动通路,神经纤维都进入网状激活系统和这一系统的神经元形成突触。网状激活系统的神经元是非特异的:同一神经元对多种信息,如痛、听、视等都能发生反应。似乎这一系统的作用是“随时警惕”、“发警报”,或者说起着“闹钟”的作用,使我们随时处于清醒状态。网状激活系统收到信息后立即向脑的相应部位发出信号,使这一部位活化或“醒”过来,从而发生反应。巴比妥类安眠药的作用就是封闭网状激活系统。网状激活系统如果损伤,人就要处于昏迷状态。
⑧丘脑 在低等脊椎动物,丘脑是主要的感觉整合中心。人和其他哺乳类,大脑取代了丘脑的一部分功能,但丘脑仍是重要的感觉整合中心。来自脊髓和脑后部的感觉冲动通过丘脑,在丘脑转换神经元后进人大脑的。
⑨大脑 人的大脑皮质(新皮质)很发达,2个对称的大脑半球从前向后延伸,盖住脑的其他部分,并且表面扩大,褶叠成回,回与回之间以沟相隔(图1-3-31),大脑皮质展开后的面积可达0.5m2。大脑皮质之下为由神经纤维构成的白质。根据皮层不同区域神经结构可分为52区。
哺乳动物和人的感觉功能和运动功能在大脑皮质由确定的部位负责(图1-3-32)。根据功能的不同,可将大脑皮质划分为不同的感觉区和运动区,如皮质的后部有视区。视区损伤,视觉就要丧失,如果头的后部受到重击,被击者常发生“金星乱跳”的感觉,这是由于受击头颅的内面正是大脑视区之故。大脑侧面有听区,损伤听区可导致失聪。两大脑半球的侧面各有一条从上到下的沟,为中央沟,沟前为体运动区,协调身体各部肌肉的运动;沟后为身体感觉区,感知触、冷、热、压力等来自皮肤感受器的信息。
体感觉区和体运动区可进一步划分为控制身体一定区域的部分。这些部分不是无秩序地随机排列的,而是有一定的格局的(图1-3-33)。如在体感觉区,控制拇指的部分和控制食指的部分是相邻的,控制食指的部分和控制中指的部分又是相邻的,所有控制手指的部分又都是和控制手掌和手腕的部分相邻的。总之,体感觉区的左部各点的安排正好画出了身体右侧的全部,体感觉区右部各点的排列也画出了身体左侧的全部。大脑皮质的运动区也有类似的情况,但各点的大小和身体各部分的大小不成比例。如在人的大脑皮层只有一个很小的部分控制身体背部肌肉,但有一个很大的部分控制手和口的肌肉,而手和口正是人的肌肉活动最强烈的部分。控制手的运动区比控制手的感觉区大,而控制唇的感觉区则比控制唇的运动区大。
除感觉区和运动区外,大脑皮质其他部分概属联络区。联络区的神经元不直接和感觉器官或肌肉相连,它们是连通大脑各区以及大脑和脑的其他部分的中间神经元。联络区很重要,诸如记忆、推理、学习、想象、心理活动等高级的智慧活动都依赖于联络区。甚至人的个性也和联络区有关。来自各处的神经冲动,经过联络区的整合,才成为有意义的神经活动过程,才能使身体做出相应的反应。
人的感觉区和运动区相对说来较小,联络区却大为发达,这正是“人为万物之灵”的基础。联络区发达,才有可能出现复杂的、多样的高级机能,如联想、记忆以及各种复杂的本能行为等。
3.自主神经系统
分配到心、肺、消化管及其他脏器的神经属自主神经系统,又称内脏神经系统(图1-3-34)。这一系统又分为交感神经系统和副交感神经系统,其功能是调节体内环境条件,如血压、心率、体温等。
自主神经系统也是分布在脏器的周围神经系统。
自主神经系统的传人神经和分布在躯体部分的周围神经系统是共同的。例如,肠胃上的感觉神经也要通过脊神经的背根而进人中枢。所以,如果认为内,脏的传人神经(感觉神经)应属周围神经系统,那么,自主神经系统就只有传出神经或运动神经了。
自主神经系统的主要特点是不受意志的控制。这一系统的另一特点是,每一脏器同时接受交感和副交感两套神经纤维的作用,两者的作用是相反的:一个是使器官的活动加强,另一个是使器官的活动减弱。
在结构上,自主神经系统的传出神经含有两个神经元,而不像身体其他部分冲动的传导路径只有一个神经元。这两个神经元的第一个位于脑或脊髓,称为节前神经元,其纤维伸人脑或脊髓夕卜面的神经节中;第二个神经元的细胞体位于这个神经节中,以树突与节前神经元的轴突形成突触。
交感神经和副交感神经对器官的相反作用,来自它们产生的神经递质和所作用内脏器官的受体的不同。脊椎动物副交感神经系统的运动纤维所释放的递质是乙酰胆碱,交感神经系统的运动纤维大多释放去甲肾上腺素。
自主神经系统虽然不受意志支配,但却是在神经中枢的密切节制下活动的。
两套神经纤维的差异见表1-3-3。
@ 4.反射
(1)反射与反射弧
反射是指在中枢神经系统参与下,机体对内、外环境刺激的规律性应答,是神经系统实现其调节功能的基本方式。实现反射活动的结构基础为反射弧。参与神经活动的神经结构由五个基本部分组成,包括感受器、传人神经、反射中枢、传出神经和效应器;在某些情况神经中枢的活动可通过体液途径(内分泌调节)间接作用于效应器。反射分条件反射和非条件反射。非条件反射生来就有,有固定反射弧,在高等动物,有的不需大脑皮层即可完成,包括食物反射、性反射、防御性反射,保障动物的基本生存。
反射弧模式1:
感受器→传人神经纤维→神经中枢→传出神经纤维→效应器(注:神经元传导冲动方向:→树突→胞体→轴突→轴突末梢→)
反射弧模式2;
(2)神经系统的高级功能(即大脑皮层的生理活动)
三种反射的差异见表1-3—5。
条件反射的形成及三种刺激的关系综合如下:
(3).反射中枢兴奋传递的特征
单向传播;中枢延搁;总和;扩散;后放;对内环境变化的敏感性和易疲劳性。
(4)反射活动的反馈性调节
反射中枢相当于控制系统,效应器相当于受控系统,效应器反应通过反馈回路作用于反射中枢,反馈信息可通过感受器转变成输入冲动,再调整反射传出活动。负反馈的反馈信息减弱控制信息,例如减压反射。正反馈的反馈信息加强控制信息,例如排尿反射。
5.感觉器官
感受器是指分布在体表或各种组织内部的能够感受机体内、外环境变化的特殊结构或装置。一般把视、听、嗅、味和平衡觉的感受器视为特殊感受器,称为感觉器官。感觉器官由高度分化的感受细胞和附属结构组成。
感受器的一般生理特征:
①适宜刺激 每种感受器只对一种能量形式的刺激最敏感。
②换能作用 感受器接受刺激时,能把作用于感受器的刺激能量转换为神经动作电位。在引发动作电位之前先在感受器出现一过渡性的局部电位,称为感受器电位。
③适应现象 当一恒定强度的刺激持续作用于感受器时,传人神经纤维的冲动频率随时间下降。触觉和嗅觉感受器属于快适应,有利于接受新的刺激。肌梭、颈动脉窦压力感受器、痛感受器等属于慢适应感受器,有利进行持久调节。适应不是疲劳。
④编码作用 感受器在受到刺激时,把刺激所包括的环境变化信息,转移到了新的电信号系统之中;刺激既可以通过每一条传人纤维的神经冲动频率来反映,又可通过参与电信号传输的神经数目来反映刺激强度。感觉的性质决定于传人冲动所到达的高级中枢部位。
(1)耳(平衡和听觉)
从进化上看,耳的原初功能只是一种平衡器官。动物进入陆地过程中,内耳才逐渐形成了听觉功能。
动物能感知身体在环境中的姿势,能调整姿势以保持身体平衡,这一功能和动物的听觉都是由含有纤毛细胞的物理感受器来承担的。身体姿势发生的变化,或外界传来的振动,使纤毛弯曲,细胞产生动作电位而发生相应的反应。
①耳的基本结构(图1—3—35)
外耳包括外耳道、耳廓、鼓膜;中耳有鼓室、听小骨、耳咽管;内耳包括耳蜗和前庭器官。
耳蜗管借助前庭膜、基底膜分为前庭阶、蜗管、鼓阶。前庭阶在耳蜗底部与卵圆窗相接,鼓阶在耳蜗底部与圆窗相接。
人和其他哺乳动物一样,外耳除外耳道外,还有沿外耳道的外缘长出的耳廓。耳廓有聚声波之功能是很明显的。外耳道终止于鼓膜。
鼓膜之内为中耳。中耳以咽鼓管和咽相通。咽鼓管的内端有瓣膜,平常瓣膜关闭,口内 杂音不能进人中耳。咽鼓管的存在使中耳和外耳的气压能够保持平衡。中耳有3块听小骨,从外向内分别称为锤骨、砧骨和镫骨。这3块听小骨连成一个杠杆样装置,锤骨的外端附着于鼓膜内面,镫骨的内端附着于中耳深部的一个卵圆形膜,即卵圆窗上。卵圆窗的下面还有一个圆形薄膜,称为圆窗。卵圆窗和圆窗是中耳的内界,两者的内侧是内耳。
内耳又称迷路,包括前庭器和蜗管两部分。前庭器是感觉身体姿势的平衡器官,由3个半规管和前庭组成。前庭内膜迷路为两个膜性小囊,内有CaC03晶体,称为耳砂。3个半规管内充以内淋巴液,位于3个互为垂直的平面上。头部的任何活动,都使管中液体流动,从而刺激前庭蜗神经(脑神经Ⅷ)将信息传人小脑。
蜗管是听觉器,是一个螺旋形膜性管道,在切面上可看到它是由3个并列的管所组成: 一个称前庭阶,一个称鼓阶,夹在前庭阶和鼓阶之间的是蜗阶。前庭阶和鼓阶是相通的,两者实际是一个“V”形管的两臂。卵圆窗盖在前庭阶的开口,鼓阶的末端贴在圆窗上。声波从外耳道进入,冲击鼓膜。鼓膜的振动通过3个听小骨而达卵圆窗。声波经听小骨传导后,振幅变小,但力量加大,卵圆窗的面积比鼓膜小得多,只有鼓膜的l/300大面积鼓膜传来的、又经镫骨加强力量的振动,使卵圆窗接受的刺激大大加强。我们能听到微弱的声音,就是因为有这样一个放大的装置所致。
蜗管中充满内淋巴液。听觉器官,即柯蒂氏器位于蜗阶中。蜗阶基底膜上有顺序排列的感觉细胞,它们的顶部有毛,和悬在它们上面的前庭膜相接触,感觉细胞之间有支持细胞,这些部分共同组成了柯蒂氏器。鼓膜振动使蜗管中液体从卵圆窗向圆窗方向“搏动”,这一刺激由前庭蜗神经传送到脑而产生听觉。
人耳可以分辨各种声音。钢琴和小提琴的声音不同,入耳都能分辨,关键仍在柯蒂氏器。不同频率和音调的声音可引起蜗阶淋巴液产生不同的共振波,导致柯蒂氏器中不同的感觉细胞发生反应,可能因此而使人耳能够分辨不同的声音。
②传音系统
(a)气传导和骨传导
气传导:主要指声波经外耳道引起鼓膜振动,再经听小骨和卵圆窗传人内耳。其次,鼓膜振动也可以引起鼓室内空气的振动,再经圆窗将振动传人内耳。
骨传导:声波可以直接经颅骨和耳蜗管壁传人内耳,使耳蜗内淋巴振动产生听觉。
(b)耳廓和外耳道的作用 耳廓有集音作用,外耳道具有共鸣腔作用。
(c)中耳的功能
中耳的减幅增压效应:鼓膜具有较好的频率响应和较小的失真度,能与声波振动同始同终。经过听骨链的传递,声波从鼓膜到卵圆窗总增压效应为22倍。
耳咽管(咽鼓管、欧氏管)维持鼓膜两侧气压的平衡。
听觉的形成:外耳道→鼓膜振动(固体振动)→听小骨振动(固体振动)→内耳耳蜗内淋巴振动(液体振动)→刺激听觉器官器(在柯蒂氏器官产生神经冲动)→位听神经中的听神经(传人神经)→大脑皮层听觉中枢形成听觉
头部位置变动感觉的形成:头部位置变动→内耳半规管和前庭内淋巴压力变化→刺激感受头部位变动感受器(产生神经冲动)→位听神经中的→支神经(传入神经)→脑干→大脑皮层躯体感觉中枢形成头部位变动感觉
(2)眼(视觉和光感受器)(图1-3—36)
①眼的结构
眼球壁由外膜即纤维膜(角膜、巩膜)、中膜即血管膜(虹膜、瞳孔、睫状体、脉络膜)、内膜即视网膜(视部、虹膜部、睫状体部)构成;折光装置包括角膜、房水、晶体(晶状体)、玻璃体。视网膜上黄斑内有中央凹,中央凹鼻侧为视神经乳头(视神经盘、视盘)。
人眼球最外面是一层结缔组织膜,称为巩膜。眼球前部透过光的部分为角膜,角膜透明,是眼的第一个聚光装置。盖在巩膜上面的是富含血管,有黑色素的脉络膜。它的功能除给眼球其他部分供血外,主要是遮光。脉络膜向眼球内部延伸而成一围绕于晶状体四周的环状膜,即虹膜。虹膜中央的空洞即瞳孔。虹膜收缩,瞳孔变小,虹膜扩张,瞳孔变大。瞳孔后,面是晶状体,透明而有弹性,是比角膜更重要的另一个聚光装置。晶状体的存在,使眼球分隔为前后两房。前房较小,充以水样液,称为房水;后房较大,充以黏稠的透明液,称为玻璃液。这两种液体有一定的聚光能力,还有保持眼球正常形状的作用。后房的内壁是盖在脉络膜上的视网膜。视网膜是神经的一部分,是眼的惟一感光装置,它相当于照像机中的底片。
②视网膜和视神经
视网膜中的感觉细胞可分两类,即视杆和视锥两种细胞。这两类细胞都是特异的神经元。从角膜中心到晶状体中心连成一直线,往后延伸,即达视网膜中央的一个小窝,称中央凹,位于一个略呈黄色的小区,即黄斑的中央。中央凹的感光细胞全为视锥细胞,而无视杆细胞,其作用是感知强光和颜色,在强光之下,能得出清晰和详细的彩色图像。视网膜的外周则富有视杆细胞。视杆细胞比视锥细胞敏感得多,能接受弱光刺激,一个光量子就可以引起一个视杆细胞兴奋。5个光量子就可使人看成一个闪光。在光线昏暗时仍有视觉,就是由于有视杆细胞存在之故。但视杆细胞不能辨色,辨色的任务完全由视锥细胞承担。猫头鹰只有视杆细胞而无视锥细胞,所以能够夜间活动,但不能辨色。鸽子只有视锥细胞而无视杆细胞,所以能辨色,但不能在昏暗中飞行。
视网膜中还有多种神经元,其中两极神经元一端以突触的形式与视杆细胞或视锥细胞相连,另一端也以突触形式与中间神经元或与神经节细胞的树突相连。各神经节细胞的轴突则联合而成视神经,即第二对脑神经,穿过视网膜后壁而人脑。在视神经突出处形成一圆形隆起,无感光能力,故称生理盲点。视网膜中各神经元互相连接,形成——个多层的神经网络。信息的传递顺序是从视杆细胞或视锥细胞经中间神经元的网络而到神经节细胞,再由视神经人脑。
③眼的调节
灯光昏暗时仍有视觉,从昏暗的室内走到阳光照耀的地方,能很快适应。这一方面是由于虹膜能放大和缩小,起着光栏的作用;另一方面还因为视网膜中有视杆和视锥两种不同的感光细胞之故。这两种感光细胞各自分别感受不同的光,光线昏暗时视杆细胞兴奋,明亮的白天则是视锥细胞兴奋,所以白天我们能分辨颜色。从暗处突然走到光明处时,视杆细胞停止工作,视锥细胞开始感光。在灯光下忽然熄灯,视锥细胞立即不再活动,改由视杆细胞接受刺激。由于有了视杆细胞和视锥细胞兴奋和静息的转换,并且由于这种转换需时极短.所以能够及时适应各种不同强度的光照。
眼能看远物,也能看近物,这是由于眼有一个由角膜、晶状体以及眼球中液体组成的调节系统所致(图1—3—37)。观察远物时,人眼的光线近于平行,依靠角膜的调节就可在视网膜上成像。观察近物时,由于光线高度辐散,只靠角膜调节就不够了,必须靠晶状体调节。晶状体相当于一个透镜,它可依靠睫状体和悬韧带的牵引而变得较平或较凸。观察远物时,晶状体较平,折射率就低,观察近物时,晶状体凸出,折射率提高,因而辐散的光能聚焦于视网膜上。
眼的这种调节方式和照像机的调焦略有不同。照像机的镜头不能改变形状,只能靠移动镜头,改变镜头与底片的距离来调焦。但是,有趣的是,鱼类是靠移动晶状体来调焦的。而有些软体动物甚至能改变整个眼球的长度,来改变晶状体与视网膜的距离,达到调焦的效果。
近视是由于眼球的前后径过长,或角膜弯曲度增大,视网膜和晶状体间的距离拉长,光线在视网膜前面聚焦,而达到视网膜时却又分散开来,结果影像模糊。戴上凹透镜(近视镜)可得到矫正(图1-3-38)。远视眼是由于眼球前后径过短,或角膜弯曲度变小,光线聚焦于视网膜的后面,结果影像模糊。戴上凸透镜(远视镜)可得到矫正。散光是由于角膜或晶状体弯曲度不均匀,光不能聚焦所致,可根据角膜不均匀的弯曲度磨制透镜加以补偿。
人和其他脊椎动物的两个眼睛是同时聚焦于同一事物的。这样聚焦的一个好处是使人能准确看出物体的距离。失去一个眼睛的人走路不稳,原因之一就是失去了判断物体距离的能力。
动物的感光色素是含蛋白质的分子,视紫红质和视紫蓝质等。大多数脊椎动物视杆细胞中的感光分子为视紫红质,这是,由一个色素分子(即视黄醛)和一个蛋白质(即视蛋白)结合而成。视黄醛是维生素A氧化而成的醛。视锥细胞所含的感光分子称为视紫蓝质,它是由一个视黄醛和另外一种蛋白质父即光视蛋白)所组成。人和猿猴的视网膜中有3种视锥细胞,各含有不同的视紫蓝质分子,它们对于不同的波长有不同的反应。如果缺少了一种或两种视锥细胞,就要发生色盲。缺少红视锥细胞或缺少绿视锥细胞,就出现红—绿色盲,这是一种最常见的色盲。
视觉的形成:
二、内分泌系统
内分泌腺与外分泌腺不同,外分泌腺指分泌物经导管输送的腺体,而内分泌腺是没有导管的腺体,分泌物直接进入血液循环运输传布全身。人体的内分泌腺如图1-3-39所示。激素是内分泌腺所分泌的活性物质。激素的作用是:调节新陈代谢,调节水盐平衡,调节生长发育生殖,参与应急反应和应激反应。w.w.w.k.s.5.u.c.o.m
【点此下载】