第三课时 两角和与差的正切
教学目标:
掌握T(α+β),T(α-β)的推导及特征,能用它们进行有关求值、化简;提高学生简单的推理能力,培养学生的应用意识,提高学生的数学素质.
教学重点:
两角和与差的正切公式的推导及特征.
教学难点:
灵活应用公式进行化简、求值.
教学过程:
Ⅰ.复习回顾
sin(α+β)=sinαcosβ+cosαsinβ(S(α+β))
sin(α-β)=sinαcosβ-cosαsinβ(S(α-β))
cos(α+β)=cosαcosβ-sinαsinβ(C(α+β))
cos(α-β)=cosαcosβ+sinαsinβ(C(α-β))
要准确把握上述各公式的结构特征.
Ⅱ.讲授新课一、推导公式
上述公式结合同角三角函数的基本关系式,我们不难得出:
当cos(α+β)≠0时
tan(α+β)==
如果cosαcosβ≠0,即cosα≠0且cosβ≠0,我们可以
将分子、分母都除以cosαcosβ,从而得到:
tan(α+β)=
不难发现,这一式子描述了两角α与β的和的正切与这两角的正切的关系.
同理可得:tan(α-β)=
或将上式中的β用-β代替,也可得到此式.
这一式子又描述了两角α与β的差的正切与这两角的正切的关系.
所以,我们将这两式分别称为两角和的正切公式、两角差的正切公式,
简记为T(α+β),T(α-β).
但要注意:运用公式T(α±β)时必须限定α、β、α±β都不等于+kπ(k∈Z),因为tan(+kπ)不存在.
下面我们看一下它们的应用
二、例题讲解
[例1]不查表求tan75°,tan15°的值.
解:tan75°=tan(45°+30°)
===2+
tan15°=tan(45°-30°)
===2-
[例2]求下列各式的值
(1) (2)
(1)分析:观察题目结构,联想学过的公式,不难看出可用两角差的正切公式.
解:=tan(71°-26°)=tan45°=1
(2)分析:虽不可直接使用两角和的正切公式,但经过变形可使用之求解.
解:由tan150°=tan(75°+75°)=
得:=2·
=2·=2cot150°=2cot(180°-30°)=-2cot30°=-2
说明:要熟练掌握公式的结构特征,以灵活应用.
[例3]利用和角公式计算的值.
分析:因为tan45°=1,所以原式可看成
这样,我们可以运用正切的和角公式,把原式化为tan(45°+15°),从而求得原式的值.
解:∵tan45°=1
∴==tan(45°+15°)=tan60°=
说明:在解三角函数题目时,要注意“1”的妙用.
[例4]若tan(α+β)=,tan(β-)=,求tan(α+)的值.
分析:注意已知角与所求角的关系,则可发现(α+)+(β-)=α+β,所以可将α+化为(α+β)-(β-),从而求得tan(α+)的值.
解:tan(α+)=tan[(α+β)-(β-)]
=
将tan(α+β)=,tan(β-)=代入上式,则,原式==
[例5]已知tanα=,tan(α-β)=-,求tan(β-2α).
解:∵α+(α-β)=2α-β
∴tan(β-2α)=tan[-(2α-β)]
=-tan(2α-β)=-tan[α+(α-β)]
===-
4.证明tan-tan=
分析:细心观察已知等式中的角,发现它们有隐含关系:+=2x,-=x
∴sinx=sincos-cossin ①
cosx+cos2x=2coscos ②
①÷②即得:
=-=tan-tan.
Ⅲ.课堂练习
1.化简下列各式
(1)tan(α+β)·(1-tanαtanβ) (2) -1
(3)
解:(1)tan(α+β)(1-tanαtanβ)
=(1-tanαtanβ)=tanα+tanβ
(2) -1=-1 =1+tanαtanβ-1=tanαtanβ
(3) =tan[(α-β)+β]=tanα
说明:这一题目若将tan(α-β)用两角差的正切公式展开,则误入歧途,要注意整体思想.
2.求值:
(1) (2)
(3)tan21°(1+tan24°)+tan24°
解:(1) =tan(35°+25°)=tan60°=
(2) =tan(86°-26°)=tan60°=
(3)分析:因为tan21°=tan(45°-24°)=
又因为tan45°=1
所以,1+tan24°=1+tan45°tan24°
这样,可将原式化为:
tan(45°-24°)(1+tan45°tan24°)+tan24°
从而求得原式的值.
解:tan21°(1+tan24°)+tan24°
=tan(45°-24°)(1+tan45°tan24°)+tan24°
=(1+tan45°tan24°)+tan24°=1
Ⅳ.课时小结
正切的和、差角公式以及它们的等价变形.
即:tan(α±β)=
Tanα±tanβ=tan(α±β)[1tanαtanβ]
1tanαtanβ=
这些公式在化简、求值、证明三角恒等式时都有不少用处.
Ⅴ.课后作业
课本P105习题 1,2,3,4
【点此下载】