第五课时 向量的数乘(二)
教学目标:
掌握实数与向量的积的运算律,理解实数与向量积的几何意义,理解两个向量共线的条件,能够运用两向量共线条件判定两向量是否平行并能熟练运用.
教学重点:
实数与向量积的运用.
教学难点:
实数与向量积的运用.
教学过程:
Ⅰ.复习回顾
上一节,我们一起学习了实数与向量的积的定义及运算律,并了解了两向量共线的条件.
这一节,我们将在上述知识的基础上进行具体运用.
Ⅱ.讲授新课
[例1]已知ABCD,E、F分别是DC和AB的中点,求证:AE∥CF.
证明:因为E、F为DC、AB的中点,
∴=,=,
由向量加法法则可知:=+=+,
=+=+.
∵四边形ABCD为平行四边形, ∴=-,=-,
∴=--=-(+)=-
∴∥, ∴AE∥CF
[例2]已知ABCD的对角线AC和BD相交于点O,证明AO=OC,BO=OD.
分析:本题考查两个向量共线的充要条件,实数与向量积的
运算以及平面向量基本定理的综合应用.
证明:∵A、O、C三点共线,B、O、D三点共线,
∴存在实数λ和μ,使得=λ,=μ.
设=a,=b,则=a+b,=b-a
∴=λ(a+b),=μ(b-a).
又∵+=,
∴a+μ(b-a)= λ (a+b),即
(1-μ-λ)a+(μ-λ)b=0,
又∵a与b不共线,
由平面向量基本定理,,
∴μ=λ=, ∴AO=AC,BO=BD,
即AO=OC,BO=OD.
[例3]已知G为△ABC的重心,P为平面上任一点,求证:PG= (PA+PB+PC).
证明:如图,设△ABC三条中线分别为AM、BK和CL,则易知AM=3GM,由向量中线公式有:
= (+),= (+),
∴+= (+) ①
同理可得+= (+) ②
+= (+) ③
由式①+②+③得:2(++)
= (+++++)=0
∴++=0
∴3=++
=(+)+(+)+(+)
=(++)+(++)=++
∴PG= (PA+PB+PC).
[例4]AD、BE、CF是△ABC的中线,若直线EG∥AB,FG∥BE.
求证:AD GC.
证明:如图,因为四边形BEGF是平行四边形.
所以=
又因为D是BC的中点,所以=,
所以-=-,
所以= (+)=+=+=
所以AD GC.
[例5]设四边形ABCD的两对角线AC、BD的中点分别是E、F,求证:|AB-CD|≤EF≤ (AB+CD).
证明:如图,∵=++,
=++,
∴2=(+)+(+)+(+)
∵E、F分别是AC、BD的中点,∴+=0,+=0,
∴= (+)
又∵|||-|||≤|+|≤||+||,
∴|||-|||≤||≤ (||+||),
即|AB-CD|≤EF≤ (AB+CD).
Ⅲ.课堂练习
课本P68练习1,2,3.
Ⅳ.课时小结
通过本节学习,要求学生在理解平面向量基本定理基础上,能掌握平面向量基本定理的简单应用.
Ⅴ.课后作业
课本P69习题 9,10,12,13
向量的数乘
1.已知ABCD中,点E是对角线AC上靠近A的一个三等分点,设=a,=b,则向量BC等于 ( )
A. 2a+b B.2a-b C.b-2a D.-b-2a
2.若=5e1,=-7e1,且||=||,则四边形ABCD是 ( )
A.平行四边形 B.等腰梯形
C.菱形 D.梯形但两腰不相等
3.设D、E、F分别为△ABC的边BC、CA、AB的中点,且=a,=b,给出下列命题:①=-a-b ②=a+b ③=-a+b ④++=0.其中正确的命题个数为 ( )
A.1 B.2 C.3 D.4
4.若O为平行四边形ABCD的中心,=4e1,=6e2,则3e2-2e1等于 ( )
A. B. C. D.
5.已知向量a,b不共线,实数x,y满足等式3xa+(10-y)b=2xb+(4y+7) a,则x= ,y= .
6.在△ABC中,=,EF∥BC交于点F,设=a,=b,用a、b表示向量为 .
7.若ke1+e2与e1+ke2共线,则实数k的值为 .
8.已知任意四边形ABCD中,E为AD中点,F为BC的中点,求证:=(+).
9.在△OAB中,C是AB边上一点,且=λ(λ>0),若=a,=b,试用a,b表示.
10.如图,=a,=b,=t(t∈R),当P是(1)中点,(2)的三等分点(离A近的一个)时,分别求.
向量的数乘答案
1.D 2.B 3.C 4.B 5. 6.-a+b 7.±1
8.已知任意四边形ABCD中,E为AD中点,F为BC的中点,求证:=(+).
证明:∵+++=0,+++=0
∴=++,=++
两式相加,
2=+++++
∵+=0,+=0
∴=(+).
9.在△OAB中,C是AB边上一点,且=λ(λ>0),若=a,=b,试用a,b表示.
解:=(b+λa)
10.如图,=a,=b,=t(t∈R),当P是(1)中点,(2)的三等分点(离A近的一个)时,分别求.
解:(1)∵P为中点,∴=(b-a)
∴=a+ (b-a)= (a+b).
(2)∵= (b-a)
∴=a+(b-a)= (b+2a).
【点此下载】