《2.2.1向量加法运算及其几何意义》教学设计说明
授课教师:河南省商丘市实验中学 杜志国
向量是近代数学中极其重要和基本的数学概念,它是沟通代数、几何、三角的一种工具,其工具作用主要体现在运算方面,本节课正是学生对于向量的运算体系所进行的第一次探索和尝试.
下面,我将从教学目标设计、教法学法设计、教学过程设计三方面对教学设计进行说明.
一、教学目标设计
教学目标的分析与确定是教学设计的起点,它是教师对学生学习内容所达水平程度的期望,基于本节课的特点,我从以下三个方面设定了本节课的教学目标:
知识目标:理解向量加法的含义,掌握向量加法的三角形法则和平行四边形法则;会用向量加法的交换律与结合律进行向量运算.
能力目标:经历向量加法概念、法则的建构过程;通过观察、实验、类比、归纳等方法培养学生发现问题、分析问题、解决问题的能力.
情感目标:经历运用数学来描述和刻画现实世界的过程;在动手探究、合作交流中培养学生勇于探索、敢于创新的个性品质.
同时,本节课的知识结构层次清晰.
重点:运用向量加法的三角形法则和平行四边形法则,作两个向量的和向量.
难点:理解向量的加法法则及其几何意义.
二、教法学法设计
“教师之为教,不在全盘授予,而在相机诱导”这是叶圣陶先生告诉我们的教书之道.我在本节课中设计了6个贯穿始终的问题作为教学主线,这些问题找准学生的思维最近发展区,激发学生探究的兴趣,引导学生探求新知.
在教学时,主要运用“问题情境教学法”、“启发式教学法”和“多媒体辅助教学法”.
由于新课程所倡导的学习是学生自主探究和建构知识的过程,所以,在学法上,我引导学生采用以“小组合作、自主探究”为主要方式的自主学习模式.
三、教学过程设计
本节课的教学过程就是:提出问题、分析问题、解决问题的过程,通过6个贯穿教学的各个环节的问题作为教学的主线,下面我结合这些问题进行说明.
【问题1】位移求和时,两次位移的位置关系是什么?如何作出它们的和位移?
教材指出:位移的合成问题是三角形法则的物理模型,问题1正是在创设了台球线路和飞机航线的问题情境后提出的,受到问题情境的启发,学生自然很容易回答,从而,为引导学生建构加法概念奠定了良好的基础.
【问题2】如图所示,对于向量和如何求解它们的和呢?
问题2的探究正是本节课的重点和难点,因此,我鼓励学生开展小组合作、自主探究,使他们亲历三角形法则概念的建构过程,培养学生的探索精神和实践能力,使他们在轻松愉快的氛围中突破难点,在过程中收获自信,体验成功!
【问题3】平行四边形法则有何特点?
由于学生对于平行四边形法则已经非常熟悉,所以他们关心的两个法则的联系和区别,问题3正是注意到学生的需求而设置的,使学生加深了对于两个法则的特点的记忆.
【问题4】想想你遇到过一些可以用向量求和来解释生活现象吗?
数学是源于生活、用于生活的,通过问题4的讨论,拉近了学生和抽象的数学知识之间的距离,激发了他们学习的兴趣,同时增强了他们学习好数学的动力.
【问题5】请类比实数加法的性质完成表格,并通过画图的方法验证你的结论.
通过“类比”的方法引入向量的加法运算律,是利用了学生已有知识的正迁移,是符合建构主义的认识的.同时,对于结论的验证使学生进一步认识的数学的严谨之美,也欣赏到了两个法则的和谐统一之美.
【问题6】同学们想一想:本节课你有些什么收获呢?留给你印象最深的是什么?作为课堂的延伸,你课后还想作些什么探究?
问题6作为本节课的收官之问,其功能除了使学生再次回顾本节课所学习的知识和技能之外,还在于使学生学会思考、乐于探究、有所感悟,这往往是一个学生能否可持续发展的重要因素.
以上是我本人对于本节课设计的一些做法和想法,由于水平有限,难免有许多的不足之处,恳请各位专家批评指正!
.精品资料。欢迎使用。
高考资源网
w。w-w*k&s%5¥u
高考资源网
w。w-w*k&s%5¥u
【点此下载】