第三十三课时 函数模型及其应用(1) 【学习导航】 知识网络 学习要求 1.了解解实际应用题的一般步骤; 2.初步学会根据已知条件建立函数关系式的方法; 3.渗透建模思想,初步具有建模的能力. 自学评价 1.数学模型就是把 实际问题 用数学语言抽象概括,再从数学角度来反映或近似地反映实际问题,得出关于实际问题的数学描述. 2. 数学建模就是把实际问题加以 抽象概括 建立相应的 数学模型 的过程,是数学地解决问题的关键. 3. 实际应用问题建立函数关系式后一般都要考察 定义域 . 【精典范例】 例1.写出等腰三角形顶角(单位:度)与底角的函数关系. 【解】  点评: 函数的定义域是函数关系的重要组成部分.实际问题中的函数的定义域,不仅要使函数表达式有意义,而且要使实际问题有意义. 例2.某计算机集团公司生产某种型号计算机的固定成本为万元,生产每台计算机的可变成本为元,每台计算机的售价为元.分别写出总成本 (万元)、单位成本(万元)、销售收入(万元)以及利润(万元)关于总产量(台)的函数关系式. 分析:销售利润销售收入成本,其中成本 (固定成本可变成本). 【解】总成本与总产量的关系为 . 单位成本与总产量的关系为 . 销售收入与总产量的关系为 . 利润与总产量的关系为  . 例3.大气温度随着离开地面的高度增大而降低,到上空为止,大约每上升,气温降低,而在更高的上空气温却几乎没变(设地面温度为). 求:(1)与的函数关系式; (2)以及处的气温. 【解】(1)由题意, 当时,, ∴当时,, 从而当时,. 综上,所求函数关系为 ; (2)由(1)知,处的气温为 , 处的气温为. 点评:由于自变量在不同的范围中函数的表达式不同,因此本例第1小题得到的是关于自变量的分段函数;第2小题是已知自变量的值,求函数值的问题. 追踪训练一 1.生产一定数量的商品时的全部支出称为生产成本,可表示为商品数量的函数,现知道一企业生产某种产品的数量为件时的成本函数是(元),若每售出一件这种商品的收入是元,那么生产并销售这种商品的数量是件时,该企业所得的利润可达到 . 2.某医药研究所开发一种新药,如果成年人按规定的剂量服用,据监测,服药后每毫升血液中的含药量(微克)与时间(小时)之间近似满足如图所示的曲线.(为线段,为某二次函数图象的一部分,为原点). (1)写出服药后与之间的函数关系式; (2)据进一步测定:每毫升血液中含药量不少于微克时,对治疗有效,求服药一次治疗疾病有效的时间.  解:(1)由已知得 (2)当时,,得; 当时,, 得 , ∴ ∴, ∴, 因此服药一次治疗疾病有效的时间约为小时. 【选修延伸】 一、函数与图象 高考热点1: (2002年高考上海文,理16)一般地,家庭用电量(千瓦时)与气温(℃)有一定的关系,如图所示,图(1)表示某年个月中每月的平均气温.图(2)表示某家庭在这年个月中每个月的用电量.根据这些信息,以下关于该家庭用电量与其气温间关系的叙述中,正确的是( )  A.气温最高时,用电量最多 B.气温最低时,用电量最少 C.当气温大于某一值时,用电量随气温增高而增加 D.当气温小于某一值时,用电量随气温渐低而增加 答案:C 分析:该题考查对图表的识别和理解能力. 【解】经比较可发现,月份用电量最多,而月份气温明显不是最高.因此项错误.同理可判断出项错误.由、、三个月的气温和用电量可得出项正确. 思维点拔: 数学应用题的一般求解程序 (1)审题:弄清题目意,分清条件和结论,理顺数量关系; (2)建模:将题目条件的文字语言转化成数学语言,用数学知识建立相应的数学模型; (3)解模:求解数学模型,得到数学结论; (4)结论:将用数学方法得到的结论还原为实际问题的意义,并根据题意下结论. 追踪训练二 1. 有一块半径为的半圆形钢板,计划剪裁成等腰梯形的形状,它的下底是⊙O的直径,上底的端点在圆周上,写出这个梯形周长和腰长间的函数关系式,并求出它的定义域.  分析:关键是用半径与腰长表示上底,由对称性:,故只要求出. 解:设腰长,作垂足为, 连结,则,∴∽, ∴,, ∴ ∴周长 , ∵是圆内接梯形 ∴, 即,解得, 即函数的定义域为 本节学习疑点:如何根据题意建立恰当的函数模型来解决实际问题. 第33课 函数模型及其应用(1) 分层训练 1.某工厂生产一种产品每件成本为元,出厂价为元,厂家从每件产品获纯利,则( )     2.某商场进了两套服装,提价后以元卖出,降价后以元卖出,则这两套服装销售后 ( ) 不赚不亏 赚了元 亏了元 赚了元 3.某商品降价后,欲恢复原价,则应提价( )         4.某种茶杯,每个元,把买茶杯的钱数(元)表示为茶杯个数(个)的函数 ,其定义域为 . 5.某种商品的进货价为元,零售价为每件元,若商店按零售价的降价出售,仍可获利(相对于进货价),则 元. 6.建筑一个容积为,深为的长方体蓄水池,池壁的造价为元/,池底的造 价为元/,把总造价(元)表示为底的一边长的函数. 7.某人骑自行车沿直线匀速旅行,先前进了千米,休息了一段时间,又沿原路返回千米,再前进千米,则此人离起点的距离与时间的关系示意图是 ( )     8.某物体一天中的温度是时间的函数:,时间单位是小时,温度单位是,时表示,其后取值为正,则上午时的温度为 ( )     9.物体从静止状态下落,下落的距离与开始下落所经过的时间的平方成正比.已知开始下落的最初两秒间,物体下落了米,则下落的距离(米)与所经过的时间(秒)间的关系为 . 10.某商人购货,进价已按原价扣去,他希望对货物定一新价,以便按新价让利销售后仍可获得进价的的纯利,则此商人经营这种货物的件数与获利总额之间的函数关系式是 . 11.某服装厂生产一种服装,每件服装的成本为元,出厂单价定位元.该厂为鼓励销售商订购,决定当一次订购量超过件时,每多订购一件,订购的全部服装的出厂单价就降低元.根据市场调查,销售商一次订购订购量不会超过件. (1)设一次订购量为件,服装的实际出厂单价为元,写出函数的表达式; (2)当销售商一次订购了件服装时,该服装厂获得的利润是多少元?(服装厂售出一件服装的利润=实际出厂单价-成本) 拓展延伸 12.今有一组实验数据如下:  1.99 3.0 4.0 5.1 6.12   1.5 4.04 7.5 12 18.01   现准备用下列函数中的一个表示这些数据满足的规律,其中最接近的一个是( ) () () () () 13.一辆汽车在某段路程中行驶速率与时间的关系如图所示. (1)求图中阴影部分的面积,并说明所求面积的实际含义; (2)假设这辆汽车的里程表在汽车行驶这段路程前的读数为,试建立行驶这段路程时汽车里程表读数与时间 的函数解析式,并作出相应的图象. w.w.w.k.s.5.u.c.o.m

【点此下载】