双曲线及其标准方程   一、教学目标 (一)知识教学点 使学生掌握双曲线的定义和标准方程,以及标准方程的推导. (二)能力训练点 在与椭圆的类比中获得双曲线的知识,从而培养学生分析、归纳、推理等能力. (三)学科渗透点 本次课注意发挥类比和设想的作用,与椭圆进行类比、设想,使学生得到关于双曲线的定义、标准方程一个比较深刻的认识. 二、教材分析 1.重点:双曲线的定义和双曲线的标准方程. (解决办法:通过一个简单实验得出双曲线,再通过设问给出双曲线的定义;对于双曲线的标准方程通过比较加深认识.) 2.难点:双曲线的标准方程的推导. (解决办法:引导学生完成,提醒学生与椭圆标准方程的推导类比.) 3.疑点:双曲线的方程是二次函数关系吗? (解决办法:教师可以从引导学生回忆函数定义和观察双曲线图形来解决,同时让学生在课外去研究在什么附加条件下,双曲线方程可以转化为函数式.) 三、活动设计 提问、实验、设问、归纳定义、讲解、演板、口答、重点讲解、小结. 四、教学过程 (一)复习提问 1.椭圆的定义是什么?(学生回答,教师板书) 平面内与两定点F1、F2的距离的和等于常数(大于|F1F2|)的点的轨迹叫做椭圆.教师要强调条件:(1)平面内;(2)到两定点F1、F2的距离的和等于常数;(3)常数2a>|F1F2|. 2.椭圆的标准方程是什么?(学生口答,教师板书)  (二)双曲线的概念 把椭圆定义中的“距离的和”改为“距离的差”,那么点的轨迹会怎样?它的方程是怎样的呢? 1.简单实验(边演示、边说明) 如图2-23,定点F1、F2是两个按钉,MN是一个细套管,两条细绳分别拴在按钉上且穿过套管,点M移动时,|MF1|-|MF2|是常数,这样就画出曲线的一支;由|MF2|-|MF1|是同一常数,可以画出另一支.  注意:常数要小于|F1F2|,否则作不出图形.这样作出的曲线就叫做双曲线. 2.设问 问题1:定点F1、F2与动点M不在平面上,能否得到双曲线? 请学生回答,不能.强调“在平面内”. 问题2:|MF1|与|MF2|哪个大? 请学生回答,不定:当M在双曲线右支上时,|MF1|>|MF2|;当点M在双曲线左支上时,|MF1|<|MF2|. 问题3:点M与定点F1、F2距离的差是否就是|MF1|-|MF2|? 请学生回答,不一定,也可以是|MF2|-|MF1|.正确表示为||MF2|-|MF1||. 问题4:这个常数是否会大于等于|F1F2|? 请学生回答,应小于|F1F2|且大于零.当常数=|F1F2|时,轨迹是以F1、F2为端点的两条射线;当常数>|F1F2|时,无轨迹. 3.定义 在上述基础上,引导学生概括双曲线的定义: 平面内与两定点F1、F2的距离的差的绝对值是常数(小于|F1F2|)的点的轨迹叫做双曲线.这两个定点F1、F2叫做双曲线的焦点,两个焦点之间的距离叫做焦距. 教师指出:双曲线的定义可以与椭圆相对照来记忆,不要死记. (三)双曲线的标准方程 现在来研究双曲线的方程.我们可以类似求椭圆的方程的方法来求双曲线的方程.这时设问:求椭圆的方程的一般步骤方法是什么?不要求学生回答,主要引起学生思考,随即引导学生给出双曲线的方程的推导. 标准方程的推导: (1)建系设点 取过焦点F1、F2的直线为x轴,线段F1F2的垂直平分线为y轴(如图2-24)  建立直角坐标系. 设M(x,y)为双曲线上任意一点,双曲线的焦距是2c(c>0),那么F1、F2的坐标分别是(-c,0)、(c,0).又设点M与F1、F2的距离的差的绝对值等于常数. (2)点的集合 由定义可知,双曲线就是集合: P={M||MF1|-|MF2||=2a}={M|MF1|-|MF2|=±2a}. (3)代数方程  (4)化简方程(由学生演板) 将这个方程移项,两边平方得:  化简得:  两边再平方,整理得: (c2-a2)x2-a2y2=a2(c2-a2). (以上推导完全可以仿照椭圆方程的推导.) 由双曲线定义,2c>2a  即c>a,所以c2-a2>0. 设c2-a2=b2(b>0),代入上式得: b2x2-a2y2=a2b2.  这就是双曲线的标准方程. 两种标准方程的比较(引导学生归纳):   教师指出: (1)双曲线标准方程中,a>0,b>0,但a不一定大于b; (2)如果x2项的系数是正的,那么焦点在x轴上;如果y2项的系数是正的,那么焦点在y轴上.注意有别于椭圆通过比较分母的大小来判定焦点在哪一坐标轴上. (3)双曲线标准方程中a、b、c的关系是c2=a2+b2,不同于椭圆方程中c2=a2-b2. (四)练习与例题 1.求满足下列的双曲线的标准方程: 焦点F1(-3,0)、F2(3,0),且2a=4;    3.已知两点F1(-5,0)、F2(5,0),求与它们的距离的差的绝对值是6的点的轨迹方程.如果把这里的数字6改为12,其他条件不变,会出现什么情况? 由教师讲解: 按定义,所求点的轨迹是双曲线,因为c=5,a=3,所以b2=c2-a2=52-32=42.  因为2a=12,2c=10,且2a>2c. 所以动点无轨迹. (五)小结 1.定义:平面内与两定点F1、F2的距离的差的绝对值等于常数(小于|F1F2|)的点的轨迹.  3.图形(见图2-25):  4.焦点:F1(-c,0)、F2(c,0);F1(0,-c)、F2(0,c). 5.a、b、c的关系:c2=a2+b2;c=a2+b2. 五、布置作业 1.根据下列条件,求双曲线的标准方程: (1)焦点的坐标是(-6,0)、(6,0),并且经过点A(-5,2);  3.已知圆锥曲线的方程为mx2+ny2=m+n(m<0<m+n),求其焦点坐标. 作业答案:  2.由(1+k)(1-k)<0解得:k<-1或k>1    六、板书设计

【点此下载】