2.4平面向量的数量积(第7课时) 一、 平面向量的数量积的物理背景及其含义 教学目的: 1.掌握平面向量的数量积及其几何意义; 2.掌握平面向量数量积的重要性质及运算律; 3.了解用平面向量的数量积可以处理有关长度、角度和垂直的问题; 4.掌握向量垂直的条件. 教学重点:平面向量的数量积定义 教学难点:平面向量数量积的定义及运算律的理解和平面向量数量积的应用 授课类型:新授课 教 具:多媒体、实物投影仪 内容分析: 本节学习的关键是启发学生理解平面向量数量积的定义,理解定义之后便可引导学生推导数量积的运算律,然后通过概念辨析题加深学生对于平面向量数量积的认识.主要知识点:平面向量数量积的定义及几何意义;平面向量数量积的5个重要性质;平面向量数量积的运算律. 教学过程: 一、复习引入: 1. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数λ,使=λ. 2.平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1,λ2使=λ1+λ2 3.平面向量的坐标表示 分别取与轴、轴方向相同的两个单位向量、作为基底.任作一个向量,由平面向量基本定理知,有且只有一对实数、,使得 把叫做向量的(直角)坐标,记作 4.平面向量的坐标运算 若,,则,,. 若,,则 5.∥ (?)的充要条件是x1y2-x2y1=0 6.线段的定比分点及λ P1, P2是直线l上的两点,P是l上不同于P1, P2的任一点,存在实数λ, 使 =λ,λ叫做点P分所成的比,有三种情况: λ>0(内分) (外分) λ<0 (λ<-1) ( 外分)λ<0 (-1<λ<0) 7. 定比分点坐标公式: 若点P1(x1,y1) ,P2(x2,y2),λ为实数,且=λ,则点P的坐标为(),我们称λ为点P分所成的比. 8. 点P的位置与λ的范围的关系: ①当λ>0时,与同向共线,这时称点P为的内分点. ②当λ<0()时,与反向共线,这时称点P为的外分点. 9.线段定比分点坐标公式的向量形式:   在平面内任取一点O,设=a,=b, 可得=. 10.力做的功:W = |F|?|s|cos?,?是F与s的夹角. 二、讲解新课: 1.两个非零向量夹角的概念 已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角. 说明:(1)当θ=0时,a与b同向; (2)当θ=π时,a与b反向; (3)当θ=时,a与b垂直,记a⊥b; (4)注意在两向量的夹角定义,两向量必须是同起点的.范围0?≤?≤180?  2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos?叫a与b的数量积,记作a?b,即有a?b = |a||b|cos?, (0≤θ≤π).并规定0与任何向量的数量积为0. ?探究:两个向量的数量积与向量同实数积有很大区别 (1)两个向量的数量积是一个实数,不是向量,符号由cos?的符号所决定. (2)两个向量的数量积称为内积,写成a?b;今后要学到两个向量的外积a×b,而a?b是两个向量的数量的积,书写时要严格区分.符号"· "在向量运算中不是乘号,既不能省略,也不能用"×"代替. (3)在实数中,若a?0,且a?b=0,则b=0;但是在数量积中,若a?0,且a?b=0,不能推出b=0.因为其中cos?有可能为0.  (4)已知实数a、b、c(b?0),则ab=bc ? a=c.但是a?b = b?c a = c 如右图:a?b = |a||b|cos? = |b||OA|,b?c = |b||c|cos? = |b||OA| ? a?b = b?c 但a ? c (5)在实数中,有(a?b)c = a(b?c),但是(a?b)c ? a(b?c) 显然,这是因为左端是与c共线的向量,而右端是与a共线的向量,而一般a与c不共线. 3."投影"的概念:作图    定义:|b|cos?叫做向量b在a方向上的投影. 投影也是一个数量,不是向量;当?为锐角时投影为正值;当?为钝角时投影为负值;当?为直角时投影为0;当? = 0?时投影为 |b|;当? = 180?时投影为 ?|b|. 4.向量的数量积的几何意义: 数量积a?b等于a的长度与b在a方向上投影|b|cos?的乘积. 5.两个向量的数量积的性质: 设a、b为两个非零向量,e是与b同向的单位向量. 1? e?a = a?e =|a|cos? 2? a?b ? a?b = 0 3? 当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = ?|a||b|. 特别的a?a = |a|2或 4? cos? = 5? |a?b| ≤ |a||b| 三、讲解范例: 例1 已知|a|=5, |b|=4, a与b的夹角θ=120o,求a·b. 例2 已知|a|=6, |b|=4, a与b的夹角为60o求(a+2b)·(a-3b). 例3 已知|a|=3, |b|=4, 且a与b不共线,k为何值时,向量a+kb与a-kb互相垂直. 例4 判断正误,并简要说明理由. ①a·0=0;②0·a=0;③0-=;④|a·b|=|a||b|;⑤若a≠0,则对任一非零b有a·b≠0;⑥a·b=0,则a与b中至少有一个为0;⑦对任意向量a,b,с都有(a·b)с=a(b·с);⑧a与b是两个单位向量,则a2=b2. 解:上述8个命题中只有③⑧正确; 对于①:两个向量的数量积是一个实数,应有0·a=0;对于②:应有0·a=0; 对于④:由数量积定义有|a·b|=|a|·|b|·|cosθ|≤|a||b|,这里θ是a与b的夹角,只有θ=0或θ=π时,才有|a·b|=|a|·|b|; 对于⑤:若非零向量a、b垂直,有a·b=0; 对于⑥:由a·b=0可知a⊥b可以都非零; 对于⑦:若a与с共线,记a=λс. 则a·b=(λс)·b=λ(с·b)=λ(b·с), ∴(a·b)·с=λ(b·с)с=(b·с)λс=(b·с)a 若a与с不共线,则(a·b)с≠(b·с)a. 评述:这一类型题,要求学生确实把握好数量积的定义、性质、运算律. 例6 已知|a|=3,|b|=6,当①a∥b,②a⊥b,③a与b的夹角是60°时,分别求a·b. 解:①当a∥b时,若a与b同向,则它们的夹角θ=0°, ∴a·b=|a|·|b|cos0°=3×6×1=18; 若a与b反向,则它们的夹角θ=180°, ∴a·b=|a||b|cos180°=3×6×(-1)=-18; ②当a⊥b时,它们的夹角θ=90°, ∴a·b=0; ③当a与b的夹角是60°时,有 a·b=|a||b|cos60°=3×6×=9 评述:两个向量的数量积与它们的夹角有关,其范围是[0°,180°],因此,当a∥b时,有0°或180°两种可能. 四、课堂练习: 1.已知|a|=1,|b|=,且(a-b)与a垂直,则a与b的夹角是( ) A.60° B.30° C.135° D.45° 2.已知|a|=2,|b|=1,a与b之间的夹角为,那么向量m=a-4b的模为( ) A.2 B.2 C.6 D.12 3.已知a、b是非零向量,则|a|=|b|是(a+b)与(a-b)垂直的( ) A.充分但不必要条件 B.必要但不充分条件 C.充要条件 D.既不充分也不必要条件 4.已知向量a、b的夹角为,|a|=2,|b|=1,则|a+b|·|a-b|= . 5.已知a+b=2i-8j,a-b=-8i+16j,其中i、j是直角坐标系中x轴、y轴正方向上的单位向量,那么a·b= . 6.已知a⊥b、c与a、b的夹角均为60°,且|a|=1,|b|=2,|c|=3,则(a+2b-c)2=______. 7.已知|a|=1,|b|=,(1)若a∥b,求a·b;(2)若a、b的夹角为60°,求|a+b|;(3)若a-b与a垂直,求a与b的夹角. 8.设m、n是两个单位向量,其夹角为60°,求向量a=2m+n与b=2n-3m的夹角. 9.对于两个非零向量a、b,求使|a+tb|最小时的t值,并求此时b与a+tb的夹角. 五、小结(略) 六、课后作业(略) 七、教学后记: 高考资源网 w。w-w*k&s%5¥u 高考资源网 w。w-w*k&s%5¥u

【点此下载】