第9课时
三、平面向量数量积的坐标表示、模、夹角
教学目的:
⑴要求学生掌握平面向量数量积的坐标表示
⑵掌握向量垂直的坐标表示的充要条件,及平面内两点间的距离公式.
⑶能用所学知识解决有关综合问题.
教学重点:平面向量数量积的坐标表示
教学难点:平面向量数量积的坐标表示的综合运用
授课类型:新授课
教 具:多媒体、实物投影仪
教学过程:
一、复习引入:
1.两个非零向量夹角的概念
已知非零向量a与b,作=a,=b,则∠AOB=θ(0≤θ≤π)叫a与b的夹角.
2.平面向量数量积(内积)的定义:已知两个非零向量a与b,它们的夹角是θ,则数量|a||b|cos?叫a与b的数量积,记作a?b,即有a?b = |a||b|cos?,
(0≤θ≤π).并规定0与任何向量的数量积为0.
3.向量的数量积的几何意义:
数量积a?b等于a的长度与b在a方向上投影|b|cos?的乘积.
4.两个向量的数量积的性质:
设a、b为两个非零向量,e是与b同向的单位向量.
1? e?a = a?e =|a|cos?; 2? a?b ? a?b = 0
3? 当a与b同向时,a?b = |a||b|;当a与b反向时,a?b = ?|a||b|. 特别的a?a = |a|2或
4? cos? = ;5?|a?b| ≤ |a||b|
5.平面向量数量积的运算律
交换律:a ? b = b ? a
数乘结合律:(a)?b =(a?b) = a?(b)
分配律:(a + b)?c = a?c + b?c
二、讲解新课:
⒈ 平面两向量数量积的坐标表示
已知两个非零向量,,试用和的坐标表示.
设是轴上的单位向量,是轴上的单位向量,那么,
所以
又,,,所以
这就是说:两个向量的数量积等于它们对应坐标的乘积的和.即
2. 平面内两点间的距离公式
设,则或.
(2)如果表示向量的有向线段的起点和终点的坐标分别为、,那么(平面内两点间的距离公式)
向量垂直的判定
设,,则
两向量夹角的余弦()
cos? =
讲解范例:
设a = (5, ?7),b = (?6, ?4),求a·b及a、b间的夹角θ(精确到1o)
例2 已知A(1, 2),B(2, 3),C(?2, 5),试判断△ABC的形状,并给出证明.
例3 已知a = (3, ?1),b = (1, 2),求满足x?a = 9与x?b = ?4的向量x.
解:设x = (t, s),
由 ∴x = (2, ?3)
例4 已知a=(1,),b=(+1,-1),则a与b的夹角是多少?
分析:为求a与b夹角,需先求a·b及|a|·|b|,再结合夹角θ的范围确定其值.
解:由a=(1,),b=(+1,-1)
有a·b=+1+(-1)=4,|a|=2,|b|=2.
记a与b的夹角为θ,则cosθ=
又∵0≤θ≤π,∴θ=
评述:已知三角形函数值求角时,应注重角的范围的确定.
例5 如图,以原点和A(5, 2)为顶点作等腰直角△OAB,使?B = 90?,求点B和向量的坐标.
解:设B点坐标(x, y),则= (x, y),= (x?5, y?2)
∵? ∴x(x?5) + y(y?2) = 0即:x2 + y2 ?5x ? 2y = 0
又∵|| = || ∴x2 + y2 = (x?5)2 + (y?2)2即:10x + 4y = 29
由
∴B点坐标或;=或
例6 在△ABC中,=(2, 3),=(1, k),且△ABC的一个内角为直角,
求k值.
解:当A = 90?时,?= 0,∴2×1 +3×k = 0 ∴k =
当B = 90?时,?= 0,=?= (1?2, k?3) = (?1, k?3)
∴2×(?1) +3×(k?3) = 0 ∴k =
当C = 90?时,?= 0,∴?1 + k(k?3) = 0 ∴k =
课堂练习:
1.若a=(-4,3),b=(5,6),则3|a|2-4a·b=( )
A.23 B.57 C.63 D.83
2.已知A(1,2),B(2,3),C(-2,5),则△ABC为( )
A.直角三角形 B.锐角三角形 C.钝角三角形 D.不等边三角形
3.已知a=(4,3),向量b是垂直a的单位向量,则b等于( )
A.或 B.或
C.或 D.或
4.a=(2,3),b=(-2,4),则(a+b)·(a-b)= .
5.已知A(3,2),B(-1,-1),若点P(x,-)在线段AB的中垂线上,则x= .
6.已知A(1,0),B(3,1),C(2,0),且a=,b=,则a与b的夹角为 .
小结(略)
课后作业(略)
板书设计(略)
课后记:
高考资源网
w。w-w*k&s%5¥u
高考资源网
w。w-w*k&s%5¥u
【点此下载】