第十一教时 教材:函数的单调性与奇偶性综合练习(《教学与测试》第21、22课) 目的:通过对例题(习题)的判析,使学生对函数的单调性与奇偶性有更深刻的理解。 过程: 一、复习函数单调性与奇偶性的定义、图象的直观形态、单调区间、判定方法等概念。 二、处理《教学与测试》第21、22课例题 例一.(P43 例一) 注意突出定义域:x(1 然后分区间讨论 例二.(P43 例二) 难点在于:判断 x2 + x1x2 + x2 > 0 应考虑用配方法 而且:∵x1, x2中至少有一个不为0, ∴…… 反之,倘若 x1, x2全为0 x2 + x1x2 + x2 = 0 例三.(P43 例三) 难点在于:分 a > 0, a = 0, a < 0 讨论 应突出“二次函数”,再结合图象分析 例四.(P45 例一) 1、2题已讲过; 第3题是两个函数之乘积, 尤其后者要利用幂指数概念 例五.( P45 例二) 此题是常见形式:应注意其中的“转换”关系 例六.(P45 例三) 此题是单调性与奇偶性综合题,注意思路分析。 三、补充: 例七、已知函数f (x), g (x)在 R上是增函数,求证: f [g (x)]在 R上也是增函数。 证:任取 x1, x ( R 且 x1 < x2 ∵g (x) 在R上是增函数 ∴g (x1) 0时,f (x) = x2 ( 2x , 则 x < 0 时,f (x) = ( x2 ( 2x 。 其中正确的序号是: ① ② ④ 例十、判断  的奇偶性。   解:∵  ∴函数的定义域为 R 且 f (x) + f ((x)  ∴f (x) = ( f ((x) ∴f (x) 为奇函数 注:判断函数奇偶性的又一途径: f (x) + f ((x) = 0 为奇函数 f (x) + f ((x) = 2 f (x) 为偶函数 四、作业:《教学与测试》 第21、22课中“练习题”

【点此下载】