第十七教时
教材:两角和与差的正切
目的:要求学生能根据两角和与差的正、余弦公式推导出两角和与差的正切公式。
过程:一、复习:两角和与差的正、余弦公式C(+( ,C((( ,S(+( ,S(((
练习:1.求证:cosx+sinx=cos(x)
证:左边= (cosx+sinx)=( cosxcos+sinxsin)
=cos(x)=右边
又证:右边=( cosxcos+sinxsin)=(cosx+sinx)
= cosx+sinx=左边
2.已知 ,求cos(((()
解: ①2: sin2(+2sin(sin(+sin2(= ③
②2: cos2(+2cos(cos(+cos2(= ④
③+④: 2+2(cos(cos(+sin(sin()=1 即:cos(((()=
二、两角和与差的正切公式 T(+( ,T(((
tan((+()公式的推导(让学生回答) ∵cos ((+()(0
tan((+()= 当cos(cos((0时
分子分母同时除以cos(cos(得:
以((代(得:
2.注意:1(必须在定义域范围内使用上述公式。即:tan(,tan(,tan((±()只要有一个不存在就不能使用这个公式,只能(也只需)用诱导公式来解。 2(注意公式的结构,尤其是符号。
3.引导学生自行推导出cot((±()的公式—用cot(,cot(表示
cot((+()= 当sin(sin((0时
cot((+()=
同理,得:cot(((()=
例一求tan15(,tan75(及cot15(的值:
解:1( tan15(= tan(45((30()=
2( tan75(= tan(45(+30()=
3( cot15(= cot(45((30()=
例二 已知tan(=,tan(=(2 求cot((((),并求(+(的值,其中0(<(<90(, 90(<(<180( 。
解:cot(((()=
∵ tan((+()=
且∵0(<(<90(, 90(<(<180( ∴90(<(+(<270(
∴(+(=135(
例三 求下列各式的值:1( 2(tan17(+tan28(+tan17(tan28(
解:1(原式=
2( ∵
∴tan17(+tan28(=tan(17(+28()(1(tan17(tan28()=1( tan17(tan28(
∴原式=1( tan17(tan28(+ tan17(tan28(=1
四、小结:两角和与差的正切及余切公式
五、作业: P38-39 练习2中 P40-41 习题4.6 1-7中余下部分 及9
【点此下载】