第十七教时 教材:两角和与差的正切 目的:要求学生能根据两角和与差的正、余弦公式推导出两角和与差的正切公式。 过程:一、复习:两角和与差的正、余弦公式C(+( ,C((( ,S(+( ,S((( 练习:1.求证:cosx+sinx=cos(x) 证:左边= (cosx+sinx)=( cosxcos+sinxsin) =cos(x)=右边 又证:右边=( cosxcos+sinxsin)=(cosx+sinx) = cosx+sinx=左边 2.已知 ,求cos(((() 解: ①2: sin2(+2sin(sin(+sin2(= ③ ②2: cos2(+2cos(cos(+cos2(= ④ ③+④: 2+2(cos(cos(+sin(sin()=1 即:cos(((()= 二、两角和与差的正切公式 T(+( ,T((( tan((+()公式的推导(让学生回答) ∵cos ((+()(0 tan((+()= 当cos(cos((0时 分子分母同时除以cos(cos(得: 以((代(得: 2.注意:1(必须在定义域范围内使用上述公式。即:tan(,tan(,tan((±()只要有一个不存在就不能使用这个公式,只能(也只需)用诱导公式来解。 2(注意公式的结构,尤其是符号。 3.引导学生自行推导出cot((±()的公式—用cot(,cot(表示 cot((+()= 当sin(sin((0时 cot((+()= 同理,得:cot(((()= 例一求tan15(,tan75(及cot15(的值: 解:1( tan15(= tan(45((30()=   2( tan75(= tan(45(+30()=  3( cot15(= cot(45((30()=  例二 已知tan(=,tan(=(2 求cot((((),并求(+(的值,其中0(<(<90(, 90(<(<180( 。 解:cot(((()= ∵ tan((+()= 且∵0(<(<90(, 90(<(<180( ∴90(<(+(<270( ∴(+(=135( 例三 求下列各式的值:1(  2(tan17(+tan28(+tan17(tan28( 解:1(原式= 2( ∵ ∴tan17(+tan28(=tan(17(+28()(1(tan17(tan28()=1( tan17(tan28( ∴原式=1( tan17(tan28(+ tan17(tan28(=1 四、小结:两角和与差的正切及余切公式 五、作业: P38-39 练习2中 P40-41 习题4.6 1-7中余下部分 及9

【点此下载】