第十六教时 教材:两角和与差的正弦 目的:能由两角和的余弦公式推导出两角和的正弦公式,并进而推得两角和的正弦公式,并运用进行简单的三角函数式的化简、求值和恒等变形。 过程:一、复习:两角和与差的余弦  练习:1.求cos75(的值 解:cos75(=cos(45(+30()=cos45(cos30((sin45(sin30( = 2.计算:1( cos65(cos115((cos25(sin115(  2( (cos70(cos20(+sin110(sin20( 解:原式= cos65(cos115((sin65(sin115(=cos(65(+115()=cos180(=(1 原式=(cos70(cos20(+sin70(sin20(=(cos(70(+20()=0 3.已知锐角(,(满足cos(= cos((+()=求cos(. 解:∵cos(= ∴sin(= 又∵cos((+()=<0 ∴(+(为钝角 ∴sin((+()= ∴cos(=cos[((+()((]=cos((+()cos(+sin((+()sin( = (角变换技巧) 二、两角和与差的正弦 推导sin((+()=cos[(((+()]=cos[((()((] =cos((()cos(+sin((()sin(=sin(cos(+cos(sin( 即: sin((+()=sin(cos(+cos(sin( (S(+() 以((代(得: sin(((()=sin(cos((cos(sin( (S((() 公式的分析,结构解剖,嘱记 例一 不查表,求下列各式的值: 1( sin75( 2( sin13(cos17(+cos13(sin17( 解:1(原式= sin(30(+45()= sin30(cos45(+cos30(sin45( = 2(原式= sin(13(+17()=sin30(= 例二 求证:cos(+sin(=2sin(+() 证一:左边=2(cos(+ sin()=2(sincos(+cos sin() =2sin(+()=右边 (构造辅助角) 证二:右边=2(sincos(+cos sin()=2(cos(+ sin() = cos(+sin(=左边 例三 〈精编〉P47-48 例一 已知sin((+()=,sin(((()= 求的值 解: ∵sin((+()= ∴sin(cos(+cos(sin(= ① sin(((()= ∴sin(cos((cos(sin(= ② ①+②:sin(cos(= ①(②:cos(sin(= 三、小结:两角和与差的正弦、余弦公式及一些技巧“辅助角”“角变换”“逆向运用公式” 四、作业: P38 练习2中①② 3中① 5中①③ P40-41 习题4.6 2中①③ 3中①②⑤⑦⑧ 7中①④⑤ 〈精编〉P60-61 2、3、4

【点此下载】