第十六教时
教材:两角和与差的正弦
目的:能由两角和的余弦公式推导出两角和的正弦公式,并进而推得两角和的正弦公式,并运用进行简单的三角函数式的化简、求值和恒等变形。
过程:一、复习:两角和与差的余弦
练习:1.求cos75(的值
解:cos75(=cos(45(+30()=cos45(cos30((sin45(sin30(
=
2.计算:1( cos65(cos115((cos25(sin115(
2( (cos70(cos20(+sin110(sin20(
解:原式= cos65(cos115((sin65(sin115(=cos(65(+115()=cos180(=(1
原式=(cos70(cos20(+sin70(sin20(=(cos(70(+20()=0
3.已知锐角(,(满足cos(= cos((+()=求cos(.
解:∵cos(= ∴sin(=
又∵cos((+()=<0 ∴(+(为钝角 ∴sin((+()=
∴cos(=cos[((+()((]=cos((+()cos(+sin((+()sin(
= (角变换技巧)
二、两角和与差的正弦
推导sin((+()=cos[(((+()]=cos[((()((]
=cos((()cos(+sin((()sin(=sin(cos(+cos(sin(
即: sin((+()=sin(cos(+cos(sin( (S(+()
以((代(得: sin(((()=sin(cos((cos(sin( (S((()
公式的分析,结构解剖,嘱记
例一 不查表,求下列各式的值:
1( sin75( 2( sin13(cos17(+cos13(sin17(
解:1(原式= sin(30(+45()= sin30(cos45(+cos30(sin45(
=
2(原式= sin(13(+17()=sin30(=
例二 求证:cos(+sin(=2sin(+()
证一:左边=2(cos(+ sin()=2(sincos(+cos sin()
=2sin(+()=右边 (构造辅助角)
证二:右边=2(sincos(+cos sin()=2(cos(+ sin()
= cos(+sin(=左边
例三 〈精编〉P47-48 例一 已知sin((+()=,sin(((()= 求的值
解: ∵sin((+()= ∴sin(cos(+cos(sin(= ①
sin(((()= ∴sin(cos((cos(sin(= ②
①+②:sin(cos(=
①(②:cos(sin(=
三、小结:两角和与差的正弦、余弦公式及一些技巧“辅助角”“角变换”“逆向运用公式”
四、作业: P38 练习2中①② 3中① 5中①③
P40-41 习题4.6 2中①③ 3中①②⑤⑦⑧ 7中①④⑤
〈精编〉P60-61 2、3、4
【点此下载】