幻灯片 1第三节 圆的方程
----
幻灯片 2三年5考 高考指数:★★
1.掌握确定圆的几何要素,掌握圆的标准方程与一般方程;
2.初步了解用代数方法处理几何问题的思想.
----
幻灯片 31.求圆的方程是高考的热点;
2.常和圆的几何性质结合,重点考查待定系数法、方程的曲线与曲线的方程的概念;
3.题型多以选择题和填空题为主,属中低档题目.
----
幻灯片 41.圆的定义与方程
(1)在平面内到______的距离等于_______的点的轨迹叫做圆;
(2)确定一个圆的基本要素是:______和_______.
(3)圆的标准方程
①两个条件:圆心(a,b), _________;
②标准方程:(x-a)2+(y-b)2=r2.
定点
定长
圆心
半径
半径r
----
幻灯片 5(4)圆的一般方程
①一般方程:x2+y2+Dx+Ey+F=0(D2+E2-4F>0);
②方程表示圆的充要条件为:______________;
③圆心坐标__________,半径r=______________.
D2+E2-4F>0
----
幻灯片 6【即时应用】
(1)方程x2+y2+ax+2ay+2a2+a-1=0表示圆,则a的取值范围是
___________;
(2)圆x2-2x+y2-3=0的圆心到直线 的距离为________;
(3)当a为任意实数时,直线(a-1)x-y+a+1=0恒过定点C,则以C为
圆心, 为半径的圆的方程为___________.
----
幻灯片 7【解析】(1)x2+y2+ax+2ay+2a2+a-1=0表示圆,所以a2+(2a)2-
4(2a2+a-1)>0,解得-2<a<
(2)x2-2x+y2-3=0的圆心坐标为(1,0),它到直线 的距
离为
----
幻灯片 8(3)直线方程变为(x+1)a-x-y+1=0,
由 得 ∴C(-1,2).
∴所求圆的方程为(x+1)2+(y-2)2=5.
即:x2+y2+2x-4y=0.
答案:(1)-2<a< (2)1 (3)x2+y2+2x-4y=0
----
幻灯片 92.点与圆的位置关系
(1)理论依据:____与_______的距离与半径的大小关系
(2)三个结论
圆的标准方程(x-a)2+(y-b)2=r2,点M(x0,y0)
①____________________⇔点在圆上;
②____________________⇔点在圆外;
③____________________⇔点在圆内.
点
圆心
(x0-a)2+(y0-b)2=r2
(x0-a)2+(y0-b)2>r2
(x0-a)2+(y0-b)2<r2
----
幻灯片 10【即时应用】
(1)思考:①若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0上,则x20+y20+Dx0+Ey0+F满足什么条件?
②若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0内,则x20+y20+Dx0+Ey0+F满足什么条件?
③若点M(x0,y0)在圆x2+y2+Dx+Ey+F=0外,则x20+y20+Dx0+Ey0+F满足什么条件?
----
幻灯片 11提示:①x20+y20+Dx0+Ey0+F=0;
②x20+y20+Dx0+Ey0+F<0;
③x20+y20+Dx0+Ey0+F>0.
----
幻灯片 12(2)已知点A(0,0)在圆:x2+y2+2ax+a2+a-2=0外,则a的取值范围是________________;
【解析】因为方程x2+y2+2ax+a2+a-2=0表示圆,所以(2a)2-4(a2+a-2)>0,解得:a<2,
又因为点A(0,0)在圆外,所以a2+a-2>0,解得:a<-2或a>1,综上可得1<a<2或a<-2.
答案:1<a<2或a<-2
----
幻灯片 13(3)已知点A(1,2)在圆:x2+y2+ax-2y+b=0上,且点A关于直线x-y=0的对称点B也在圆上,则a=_________,b=_________.
【解析】点A(1,2)关于直线x-y=0的对称点为B(2,1),又因为A、B两点都在圆上,
所以 解得
或由题意得圆心 在直线x-y=0上,
∴ ∴a=-2.
又点A(1,2)在圆上,得b=1.
答案:-2 1
----
幻灯片 14 求圆的方程
【方法点睛】1.求圆的方程的方法
(1)直接法:根据圆的几何性质,直接求出圆心坐标和半径,进而写出方程;
(2)待定系数法:
①若已知条件与圆心(a,b)和半径r有关,则设圆的标准方程,依据已知条件列出关于a、b、r的方程组,从而求出a、b、r的值;
----
幻灯片 15②若已知条件没有明确给出圆心或半径,则选择圆的一般方程,依据已知条件列出关于D、E、F的方程组,进而求出D、E、F的值.
2.确定圆心位置的方法
(1)圆心在过切点且与切线垂直的直线上;
(2)圆心在任意一弦的垂直平分线上;
(3)两圆相切时,切点与两圆圆心共线.
----
幻灯片 16【例1】(1)(2012·南昌模拟)过点A(-2,4)、B(3,-1)两点,并且在x轴上截得的弦长等于6的圆的方程______________;
(2)求经过点A(-2,-4),且与直线l:x+3y-26=0相切于点B(8,6)的圆的方程.
----
幻灯片 17【解题指南】(1)可设圆的方程的一般形式,利用A(-2,4)、B(3,-1)两点在圆上及该圆在x轴上截得的弦长等于6,得出三个方程,解方程组即可确定圆的方程;
(2)可先设圆心坐标为C(a,b),由圆心与切点连线与切线垂直及圆心到圆上点的距离相等得出关于a、b的两个方程,解方程组即可得到圆心坐标,再求出半径,得出圆的方程;也可直接求出圆心坐标,再求出半径,得出圆的方程.
----
幻灯片 18【规范解答】(1)设圆的方程为x2+y2+Dx+Ey+F=0,将A、B两点的坐标代入得 再令y=0,得x2+Dx+F=0,设x1、x2是方程的两根,由|x1-x2|=6得,D2-4F=36,
因此,所求圆的方程为x2+y2-2x-4y-8=0或x2+y2-6x-8y=0.
----
幻灯片 19答案:x2+y2-2x-4y-8=0或x2+y2-6x-8y=0
(2)方法一:设圆心坐标为C(a,b),依题意得:
解得:
半径
----
幻灯片 20因此,所求圆的方程为:
方法二:依题意得,圆心在AB的垂直平分线上,而AB的垂直平分线方程为:x+y-4=0;又因为圆心也在过B且与直线l垂直的直线上,而此直线方程为:3x-y-18=0,解方程组
以下同方法一.
----
幻灯片 21【互动探究】本例(2)中“经过点A(-2,-4)”改为“圆心在直线x+y-4=0上”,结果如何?
【解析】方法一:设所求圆的方程为(x-a)2+(y-b)2=r2,依题设
有 解得
因此,所求圆的方程为:
----
幻灯片 22方法二:依题设可知,圆心也在过切点B(8,6)且与l垂直的直
线上,其斜率为3,所以方程为y-6=3(x-8)
即3x-y-18=0,又圆心在x+y-4=0上,
由 得圆心
半径
因此,所求圆的方程为:
----
幻灯片 23【反思·感悟】1.从题组求解可以看出,确定一个圆的方程,需要三个独立的条件;“选形式,定参数”是求圆的方程的基本方法,即根据题设条件恰当选择圆的方程的形式,进而确定其中的三个参数.
2.解答与圆有关的问题,应注意数形结合,充分运用圆的几何性质,简化运算.
----
幻灯片 24【变式备选】已知圆心为点(2,-3),一条直径的两个端点恰好
落在两个坐标轴上,则这个圆的方程是___________________.
【解析】因为圆心为点(2,-3),一条直径的两个端点恰好落在
两个坐标轴上,所以,直径的两个端点坐标为(4,0)、(0,-6),
所以,圆的半径为 圆的方程为:
(x-2)2+(y+3)2=13.
答案:(x-2)2+(y+3)2=13
----
幻灯片 25 与圆有关的最值问题
【方法点睛】与圆有关的最值问题,常见的有以下类型
(1)形如 型的最值问题,可转化为过点(a,b)和点(x,y)
的直线的斜率的最值问题;
(2)形如t=ax+by型的最值问题,可转化为动直线的截距的最值
问题;
(3)形如(x-a)2+(y-b)2型的最值问题,可转化为动点到定点的
距离平方的最值问题.
----
幻灯片 26【例2】已知实数x、y满足方程x2+y2-4x+1=0.
(1)求 的最大值和最小值;
(2)求y-x的最大值和最小值;
(3)求x2+y2的最大值和最小值.
【解题指南】充分利用所求代数式的几何意义,运用几何法求
解. 为点(x,y)与原点连线的斜率;而y-x表示动直线y=x+b的
纵截距;x2+y2表示点(x,y)与原点的距离的平方;也可以消去
一个元,转化为在函数定义域内求最值.
----
幻灯片 27【规范解答】(1)原方程可化为(x-2)2+y2=3,表示以(2,0)为圆
心, 为半径的圆, 的几何意义为点(x,y)与原点连线的斜
率,所以设 即y=kx,当直线与圆相切时,斜率k取最大值
或最小值,此时 解得k=± .所以 的最大值为
、最小值为
(2)y-x可看作直线y=x+b在y轴上的截距,当直线与圆相切时,
直线y=x+b在y轴上的截距取最大值或最小值,此时
解得b=-2± .所以y-x的最大值为 最小值为
----
幻灯片 28(3)方法一:x2+y2表示点(x,y)与原点的距离的平方,由平面几何知识可知,原点与圆心的连线所在直线与圆的两个交点处取得最大值或最小值.又圆心到原点的距离为2,
故(x2+y2)max=(2+ )2=7+
(x2+y2)min=(2- )2=7-
----
幻灯片 29方法二:由x2+y2-4x+1=0得:y2=-x2+4x-1,且-x2+4x-1≥0,
即:2- ≤x≤2+ ,
∴x2+y2=x2+(-x2+4x-1)=4x-1,
∴(x2+y2)max=4(2+ )-1=7+4 ;
(x2+y2)min=4(2- )-1=7-4 .
----
幻灯片 30【反思·感悟】1.本题三问都是求代数式的最值,它们都是利用代数式的几何意义与取最值时所满足的条件得出等式,通过解方程即可得出结论.
2.解答圆的最值问题,应注意数形结合,充分运用直线的斜率、在坐标轴上的截距、几何性质,来寻找解题思路.
----
幻灯片 31【变式训练】已知点P(x,y)在圆x2+(y-1)2=1上运动,则
的最大值为_________;最小值为_________.
【解析】 的几何意义表示圆上的动点与(2,1)连线的斜率,
所以设 =k,即kx-y+1-2k=0,当直线与圆相切时,斜率k取
最大值或最小值,此时 解得k=± .所以 的
最大值为 、最小值为 .
答案:
----
幻灯片 32【变式备选】若点P(x,y)是圆(x+1)2+y2=1上任意一点,求(x-2)2+(y+4)2的最大值、最小值.
【解析】方法一:(x-2)2+(y+4)2表示圆上的点到定点(2,-4)的
距离的平方,因为圆心(-1,0)到点(2,-4)的距离为
所以,圆上的点到点(2,-4)的距离的最大值
为6、最小值为4;因此,(x-2)2+(y+4)2的最大值为36、最小值
为16.
----
幻灯片 33方法二:因为点P(x,y)是圆(x+1)2+y2=1上任意一点,所以可设
则(x-2)2+(y+4)2
=(cosθ-3)2+(sinθ+4)2=26+8sinθ-6cosθ
=26+10sin(θ+β)(其中 ).
故(x-2)2+(y+4)2的最大值为36;
(x-2)2+(y+4)2的最小值为16.
----
幻灯片 34 与圆有关的轨迹问题
【方法点睛】
1.求轨迹方程的基本步骤
第一步:建立适当的平面直角坐标系,设曲线上任意点的坐标为M(x,y);
第二步:写出适合已知条件的点M的集合P={M|P(M)};
第三步:用坐标表示P(M),列出方程f(x,y)=0;
第四步:化简方程f(x,y)=0为最简形式.
----
幻灯片 352.求与圆有关的轨迹方程的方法
【提醒】注意轨迹与轨迹方程的区别.
----
幻灯片 36【例3】设定点M(-3,4),动点N在圆x2+y2=4上运动,以OM、ON为两边作平行四边形MONP,O为坐标原点,求点P的轨迹方程.
【解题指南】可设点P坐标为P(x,y),点N坐标为N(x0,y0),利用中点坐标公式,可找到两点坐标之间的关系,利用代入法即可求解.
----
幻灯片 37【规范解答】如图所示,设P(x,y),N(x0,y0),
则线段OP的中点坐标为 线段MN的中
点坐标为 因为平行四边形的
对角线互相平分,
故
N(x+3,y-4)在圆x2+y2=4上,
故(x+3)2+(y-4)2=4.
因此所求P点的轨迹方程为:(x+3)2+(y-4)2=4,但应除去两点:
(点P在OM所在的直线上时的情况).
----
幻灯片 38【反思·感悟】1.求点的轨迹时,关键是要发现点满足的几何条件,寻找等式,得出方程.本题是利用中点坐标找到等式,再用代入法求解.
2.解答轨迹问题时,要注意验证应该删除的点或遗漏的点,以防增解或漏解.
----
幻灯片 39【变式训练】已知圆C:(x-1)2+(y-1)2=9,过点A(2,3)作圆C的任意弦,求这些弦的中点P的轨迹方程.
【解析】方法一:直接法
设P(x,y),由题意知圆心C(1,1).
∵P点是过点A的弦的中点,
又∵ =(2-x,3-y), =(1-x,1-y),
∴(2-x)(1-x)+(3-y)(1-y)=0,
∴P点的轨迹方程为
----
幻灯片 40方法二:定义法
由已知知,PA⊥PC,∴由圆的性质知点P在以AC为直径的圆上,
又圆心C(1,1),而AC中点为
所以半径为
所求动点P的轨迹方程为
----
幻灯片 41【满分指导】与圆的方程有关的解答题的规范解答
【典例】(12分)(2011·新课标全国卷)在平面直角坐标系xOy
中,曲线y=x2-6x+1与坐标轴的交点都在圆C上.
(1)求圆C的方程;
(2)若圆C与直线x-y+a=0交于A,B两点,且OA⊥OB,求a的值.
【解题指南】(1)可先求出曲线与坐标轴的交点坐标,再求圆
的方程;(2)直线与圆的方程联立,由 即可求出a的
值.
----
幻灯片 42【规范解答】(1)曲线y=x2-6x+1与坐标轴的交点为(0,1),(3± ,0).……………………………………2分
故可设圆的圆心坐标为(3,t),
则有 解得:t=1.…………………4分
则圆的半径为
所以圆的方程为:(x-3)2+(y-1)2=9.…………………6分
(2)设A(x1,y1),B(x2,y2),其坐标满足方程组
消去y得到方程:2x2+(2a-8)x+a2-2a+1=0,
----
幻灯片 43由已知可得判别式Δ=(2a-8)2-4×2(a2-2a+1)
=56-16a-4a2>0,
由根与系数的关系可得:
x1+x2=4-a,x1x2= ①………………………………9分
由OA⊥OB可得:x1x2+y1y2=0.
又y1=x1+a,y2=x2+a,
所以2x1x2+a(x1+x2)+a2=0 ②
由①②可得a=-1,满足Δ>0,故a=-1.…………………12分
----
幻灯片 44【阅卷人点拨】通过高考中的阅卷数据分析与总结,我们可以得到以下失分警示和备考建议:
----
幻灯片 45----
幻灯片 461.(2011·安徽高考)若直线3x+y+a=0过圆x2+y2+2x-4y=0的圆心,则a的值为( )
(A)-1 (B)1 (C)3 (D)-3
【解析】选B.圆的方程x2+y2+2x-4y=0可变形为(x+1)2+(y-2)2
=5,所以圆心坐标为(-1,2),代入直线方程得a=1.
----
幻灯片 472.(2012·鹰潭模拟)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
(A)(x-2)2+(y-1)2=1 (B)(x-2)2+(y+1)2=1
(C)(x+2)2+(y-1)2=1 (D)(x-3)2+(y-1)2=1
【解析】选A.设圆心坐标为(a,b),则a>0,b>0,且b=1,
∴ 解得a=2,
∴该圆的标准方程为(x-2)2+(y-1)2=1.
----
幻灯片 483.(2011·辽宁高考)已知圆C经过A(5,1),B(1,3)两点,圆心在x轴上,则圆C的方程为__________________.
【解析】设C(x,0),由|CA|=|CB|,
得
解得x=2.∴r=|CA|=
∴圆C的标准方程为(x-2)2+y2=10.
答案:(x-2)2+y2=10
----
幻灯片 49----
幻灯片 50----
【点此下载】