. 2014高考数学一轮课时专练(理科安徽省专用):(六十七) [第67讲 数学证明] (时间:45分钟 分值:100分)                     1.下列符合三段论推理形式的为(  ) A.如果p?q,p真,则q真 B.如果b?c,a?b,则a?c C.如果a∥b,b∥c,则a∥c D.如果a>b,c>0,则ac>bc 2.[2012·郑州检测] 类比平面内正三角形的“三边相等,三内角相等”的性质,可推出正四面体的下列性质,你认为比较恰当的是(  ) ①各棱长相等,同一顶点上的任意两条棱的夹角都相等;②各个面都是全等的正三角形,相邻两个面所成的二面角都相等;③各面都是面积相等的三角形,同一顶点上的任意两条棱的夹角都相等. A.① B.② C.①②③ D.③ 3.[2012·太原检测] 已知p是q的充分不必要条件,则綈q是綈p的(  ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件 4.[2012·石家庄模拟] 已知ai,bi∈R(i=1,2,3,…,n),a+a+…+a=1,b+b+…+b=1,则a1b1+a2b2+…+anbn的最大值为(  ) A.1 B.2 C.n D.2  5.[2013·泰州模拟] 设a,b,c是不全相等的正数,给出下列判断: ①(a-b)2+(b-c)2+(c-a)2≠0; ②a>b,a<b及a=b中至少有一个成立; ③a≠c,b≠c,a≠b不能同时成立. 其中正确判断的个数为(  ) A.1个 B.2个 C.3个 D.4个 6.已知c>1,a=-,b=-,则正确的结论是(  ) A.a>b B.aB>C 8.用反证法证明命题:若整系数一元二次方程ax2+bx+c=0(a≠0)有有理根,那么a,b,c中至少有一个是偶数时,下列假设中正确的是(  ) A.假设a,b,c都是偶数 B.假设a,b,c都不是偶数 C.假设a,b,c至多有一个是偶数 D.假设a,b,c至多有两个是偶数 9.观察数列1,,,,,,,,,,…,则数将出现在此数列的第(  ) A.21项 B.22项 C.23项 D.24项 10.[2012·安徽砀山一中模拟] 定义“自传数”为满足以下条件的自然数:第一位数(从左至右)是所有数位中“0”的个数,第二位数是所有数位中“1”的个数,第三位数是所有数位中“2”的个数,…(例如6 210 001 000是一个“自传数”).则最小的“自传数”等于________. 11.[2012·池州一模] 命题:“若空间两条直线a,b分别垂直于平面α,则a∥b”,学生小夏这样证明:设a,b与面α分别相交于A,B,连接AB. ∵a⊥α,b⊥α,AB?α,① ∴a⊥AB,b⊥AB,② ∴a∥b.③ 这里的证明有两个推理,即:①?②和②?③.老师评改认为小夏的证明推理不正确,这两个推理中不正确的是________. 12.如图K67-1所示,由若干个点组成形如三角形的图形,每条边(包括两个端点)有n(n>1,n∈N)个点,每个图形总的点数记为an,则+++…+=________.  图K67-1 13.[2012·开封模拟] 如果函数f(x)在区间D上是凸函数,那么对于区间D内的任意x1,x2,…,xn,都有≤f.若y=sinx在区间(0,π)上是凸函数,那么在△ABC中,sinA+sinB+sinC的最大值是________. 14.(10分)已知a>0,b>0,求证:+≥a+b. 15.(13分)[2012·湖北卷] (1)已知函数f(x)=rx-xr+(1-r)(x>0),其中r为有理数,且0
【点此下载】