.
2014高考数学一轮课时专练(理科浙江省专用):(三十七) [第37讲 空间几何体的表面积与体积]
(时间:45分钟 分值:100分)
1.[2012·杭州二模] 一个正方体的体积是8,则这个正方体的内切球的表面积是( )
A.8π B.6π
C.4π D.π
2.正六棱柱的高为6,底面边长为4,则它的全面积为( )
A.48(3+)
B.48(3+2)
C.24(+)
D.144
3.[2012·沈阳三模] 已知一圆锥的母线长为4,若过该圆锥顶点的所有截面面积分布范围是(0,4],则该圆锥的侧面展开图的扇形圆心角等于( )
A.
B. π或π
C. π
D. π
4.[2012·镇海模拟] 若一个三棱锥的三视图(单位:cm)如图K37-1所示,则该棱锥的全面积是________ cm2.
图K37-1
5.[2012·合肥二模] 正方体内切球和外接球半径的比为( )
A.1∶ B.1∶
C.∶ D.1∶2
6.[2012·沈阳二模] 一个四面体的所有棱长都为,四个顶点在同一球面上,则此球的表面积为( )
A.3π B.4π
C.3π D.6π
7.[2012·广东卷] 某几何体的三视图如图K37-2所示,它的体积为( )
图K37-2
A.12π B.45π
C.57π D.81π
8.[2012·石家庄二模] 一个空间几何体的三视图如图K37-3所示,则该几何体的体积为( )
图K37-3
A.π cm3 B.3π cm3
C.π cm3 D.π cm3
9.已知某几何体的三视图如图K37-4,则该几何体的体积为( )
图K37-4
A.1 B. C. D.
10.[2012·太原一模] 如图K37-5所示,某几何体的正视图、侧视图均为等腰三角形,俯视图是正方形,则该几何体的外接球的体积是________.
图K37-5
11.[2012·郑州一模] 四棱锥P-ABCD的顶点P在底面ABCD中的投影恰好是A,其三视图如图K38-6,则四棱锥P-ABCD的体积为________.
图K37-6
12.[2012·天津卷] 一个几何体的三视图如图K37-7所示(单位:m),则该几何体的体积为________________________________________________________________________ m3.
图K37-7
图K37-8
13.[2012·石家庄一模] 如图K37-8所示,已知球O的面上有四点A,B,C,D,DA⊥平面ABC,AB⊥BC,DA=AB=BC=,则球O的体积等于________.
14.(10分)一直三棱柱高为6 cm,底面三角形的边长分别为3 cm,4 cm,5 cm,将该棱柱削成圆柱,求削去部分体积的最小值.
15.(13分)一个几何体的三视图如图K37-9所示.已知正视图是底边长为1的平行四边形,侧视图是一个长为,宽为1的矩形,俯视图为两个边长为1的正方形拼成的矩形.
(1)求该几何体的体积V;
(2)求该几何体的表面积S.
图K37-9
16.(12分)如图K37-10,在△ABC中,∠ABC=45°,∠BAC=90°,AD是BC上的高,沿AD把△ABD折起,使∠BDC=90°.
(1)证明:平面ADB⊥平面BDC;
(2)若BD=1,求三棱锥D-ABC的表面积.
图K37-10
【点此下载】