课时提升作业(八) 一、选择题 1.(2013·咸阳模拟)函数f(x)=的定义域是( ) (A)(-∞,-3) (B)(-,1) (C)(-,3) (D)[3,+∞) 2.下列函数中,既是偶函数,又在(0,1)上是增加的函数是( ) (A)y=|log3x| (B)y=x3 (C)y=e|x| (D)y=cos|x| 3.(2013·天津模拟)已知a=log23.6,b=log43.2,c=log43.6,则( ) (A)a>b>c (B)a>c>b (C)b>a>c (D)c>a>b 4.若点(a,b)在y=lgx的图像上,a≠1,则下列点也在此图像上的是( ) (A)(,b) (B)(10a,1-b) (C)(,b+1) (D)(a2,2b) 5.(2013·黄冈模拟)已知实数a,b满足等式2a=3b,下列五个关系式:①0b>c (B)a>c>b (C)b>a>c (D)c>a>b 7.(2013·景德镇模拟)函数y=loga(|x|+1)(a>1)的图像大致是( )  8.(2013·济南模拟)设函数f(x)定义在实数集上,f(2-x)=f(x),且当x≥1时,f(x)=lnx,则有( ) (A)f()f(-a),则实数a的取值范围是( ) (A)(-1,0)∪(0,1) (B)(-∞,-1)∪(1,+∞) (C)(-1,0)∪(1,+∞) (D)(-∞,-1)∪(0,1) 二、填空题 11.若loga(a2+1)log43.6>log43.2, ∴a>c>b. 【方法技巧】比较对数值大小的三种情况 (1)同底数对数值的大小比较可直接利用其单调性进行判断. (2)既不同底数,又不同真数的对数值的比较,先引入中间量(如-1,0,1等),再利用对数函数的性质进行比较. (3)底数不同,真数相同的对数值的比较大小,可利用函数图像或比较其倒数大小来进行. 4.【解析】选D.∵点(a,b)在函数y=lgx的图像上, ∴b=lga,则2b=2lga=lga2, 故点(a2,2b)也在函数y=lgx的图像上. 5.【解析】选B.设2a=3b=k, 则a=log2k,b=log3k. 在同一直角坐标系中分别画出函数y=log2x,y=log3x的图像如图所示,  由图像知:aa>b. 7.【解析】选B.由题意知y=loga(|x|+1)=根据图像平移规律可知B正确. 8.【解析】选C.由f(2-x)=f(x)知f()=f(2-)=f(),f()=f(2-)=f(), 又函数f(x)=lnx在[1,+∞)上是增加的, ∴f()1, ∴0f(m)=f(n), 即函数f(x)在区间[m2,n]上的最大值为f(m2). 由题意知f(m2)=2,即-log2m2=2, ∴m=,由f(m)=f(n)得-log2=log2n,∴n=2. 10.【思路点拨】a的范围不确定,故应分a>0和a<0两种情况求解. 【解析】选C.①当a>0时,-a<0, 由f(a)>f(-a)得log2a>loa, ∴2log2a>0,∴a>1. ②当a<0时,-a>0, 由f(a)>f(-a)得lo(-a)>log2(-a), ∴2log2(-a)<0,∴0<-a<1,即-11. 11.【解析】∵loga(a2+1)<0=loga1,a2+1>1,∴02a,又loga(2a)<0,即2a>1, ∴ 解得或lox<-,即lox>lo或lox2. 答案:(0,)∪(2,+∞) 13.【解析】y=(lox)2-lox+5, 令t=lox(2≤x≤4), 则-1≤t≤-且y=t2-t+5, ∴当t=-时,ymin=++5=. 答案: 14.【思路点拨】由当x≥0时,f(x)=f(x-7)知f(x)是周期为7的函数,由此可对f(2013)进行化简. 【解析】当x≥0时,f(x)=f(x-7),即f(x+7)=f(x),从而f(2013)=f(4)= f(-3)=log33=1. 答案:1 15.【解析】(1)f(x)=(2log4x-2)(log4x-),令t=log4x,x∈[2,4]时,t∈[,1],此时,y=(2t-2)(t-)=2t2-3t+1,y∈[-,0]. (2)由题知,f(x)≥mlog4x,即2t2-3t+1≥mt对t∈[1,2]恒成立,m≤2t+-3对t∈[1,2]恒成立, 易知g(t)=2t+-3在t∈[1,2]上是增加的,g(t)min=g(1)=0,∴m≤0.

【点此下载】