(对应学生用书P263 解析为教师用书独有)
(时间:45分钟 满分:100分)
一、选择题(本大题共6小题,每小题6分,共36分)
1.一个班级有5个小组,每一个小组有10名学生,随机编号为1~10号,为了了解他们的学习情况,要求抽取每组的2号学生留下来进行问卷调查,这里运用的方法是 ( )
A.分层抽样法 B.抽签法
C.随机数法 D.系统抽样法
解析 D 因为按照一定规则进行抽样,故选D.
2.(2013·郑州测试)一个学校高三年级共有学生200人,其中男生有120人,女生有80人,为了调查高三复习状况,用分层抽样的方法从全体高三学生中抽取一个容量为25的样本,应抽取女生的人数为 ( )
A.20 B.15
C.12 D.10
解析 D 应抽取女生人数n=80×=10.
3.某单位共有老、中、青职工430人,其中有青年职工160人,中年职工人数是老年职工人数的2倍.为了了解职工身体状况,现采用分层抽样方法进行调查,在抽取的样本中有青年职工32人,则该样本中的老年职工人数为( )
A.9 B.18
C.27 D.36
解析 B 设该单位有老年职工x人,则160+x+2x=430,∴x=90.设抽取的样本中的老年职工有y人,则有=,∴y=18.
4.高三(1)班共有56人,学号依次为1,2,3,…,56,现用系统抽样的办法抽取一个容量为4的样本.已知学号为6,34,48的同学在样本中,那么还有一个同学的学号应为 ( )
A.30 B.25
C.20 D.15
解析 C 由题意可知,可将学号依次为1,2,3,…,56的56名同学分成4组,每组14人,抽取的样本中,若将他们的学号按从小到大的顺序排列,彼此之间会相差14,故还有一个同学的学号应为14+6=20.
5.某企业对全厂的男女职工共2 400人进行健康调查,采取分层抽样法抽取一个容量为120的样本,已知女职工比男职工多抽了20人,则该厂的男职工人数应是 ( )
A.1 000 B.1 200
C.1 400 D.1 600
解析 A 依题意,应该抽取女职工70人、男职工50人,所以该厂一共有男职工×50=1 000人.
6.为了检查某超市货架上的奶粉中维生素的含量,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用系统抽样的方法确定所选取的5袋奶粉的编号可能是 ( )
A.5,10,15,20,25 B.2,4,8,16,32
C.1,2,3,4,5 D.7,17,27,37,47
解析 D 选取的奶粉的编号构成公差为10的等差数列,且首项在1到10之间,末项在41~50之间.故选D.
二、填空题(本大题共3小题,每小题8分,共24分)
7.某工厂生产A、B、C三种不同型号的产品,产品数量之比依次为2∶3∶5,现用分层抽样方法抽出一个容量为n的样本,样本中A型产品有16件,那么此样本容量n=________.
解析 依题意A、B、C三种不同型号样本个数之比为2∶3∶5,∴样本中B型产品有24件,C型产品有40件,
∴n=16+24+40=80.
【答案】 80
8.某企业三月中旬生产A、B、C三种产品共3 000件,根据分层抽样的结果,该企业统计员制作了如下的统计表格:
产品类型
A
B
C
产品数量(件)
1 300
样本容量(件)
130
由于不小心,表格中A、C产品的有关数据已被污染看不清楚,统计员记得A产品的样本容量比C产品的样本容量多10,根据以上信息,可得C产品的数量是_____________________________________________________________件.
解析 设C产品的数量为x,则A产品的数量为1 700-x,C产品的样本容量为a,则A产品的样本容量为10+a,由分层抽样的定义可知:==,∴ x=800.
【答案】 800
9.(2013·咸阳模拟)某中学开学后从高一年级的学生中随机抽取80名学生进行家庭情况调查,经过一段时间后,再次从这个年级随机抽取100名学生进行学情调查,发现有20名学生上次被抽到过,估计这个学校高一年级的学生人数为________.
解析 根据抽样的等可能性,设高一年级共有x人,则=,∴x=400.
【答案】 400
三、解答题(本大题共3小题,共40分)
10.(12分)某工厂有1 000名工人,从中抽取10人参加体检,试用系统抽样方法进行具体实施.
解析 ①将所有工人随机编号,由0001至1 000;
②分段,取间隔k==100,将总体均分为10组,每组含100个工人;
③从第一段即0001号到0100号中随机抽取一个号l;
④将l,100+l,200+l,…,900+l共10个号选出.这10个号所对应的工人组成要抽取的样本.
11.(12分)某批零件共160个,其中,一级品48个,二级品64个,三级品32个,等外品16个.从中抽取一个容量为20的样本.请说明分别用简单随机抽样、系统抽样和分层抽样法抽取时总体中的每个个体被取到的概率均相同.
解析 (1)简单随机抽样法:可采取抽签法,将160个零件按1~160编号,相应地制作1~160号的160个号签,把它们放在一起,并搅拌均匀,从中随机抽取20个.显然每个个体被抽到的概率为=.
(2)系统抽样法:将160个零件从1至160编上号,按编号顺序分成20组,每组8个.然后在第1组用抽签法随机抽取一个号码,例如它是第k号(1≤k≤8),则在其余组中分别抽取第k+8n(n=1,2,3,…,19)号,此时每个个体被抽到的概率为.
(3)分层抽样法:按比例=,分别在一级品、二级品、三级品、等外品中抽取48×=6个,64×=8个,32×=4个,16×=2个,每个个体被抽到的概率分别为,,,,即都是.综上可知,无论采取哪种抽样,总体的每个个体被抽到的概率都是.
12.(16分)一个城市有210家百货商店,其中大型商店有20家,中型商店有40家,小型商店有150家.为了掌握各商店的营业情况,要从中抽取一个容量为21的样本,按分层抽样方法抽取样本时,各类百货商店要分别抽取多少家?写出抽样过程.
解析 ∵21∶210=1∶10,
∴=2,=4,=15.
∴应从大型商店中抽取2家,从中型商店中抽取4家,从小型商店中抽取15家.
抽样过程:
(1)计算抽样比=;
(2)计算各类百货商店抽取的个数:
=2,=4,=15;
(3)用简单随机抽样方法依次从大、中、小型商店中抽取2家、4家、15家;
(4)将抽取的个体合在一起,就构成所要抽取的一个样本.
【点此下载】