.
2014高考数学一轮课时专练(人教A版理科通用):(五十六) [第56讲 变量的相关性、统计案例]
(时间:45分钟 分值:100分)
1.[教材改编试题] 考察下列各组变量,哪些变量是相关关系( )
①房屋面积与房屋价格;②粮食产量与施肥量;③铁块的大小与质量;④人体内脂肪含量与年龄.
A.①③ B.①④
C.②④ D.②③
2.[2012·湛江调研] 已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为( )
A.=1.23x+4 B.=1.23x+5
C.=1.23x+0.08 D.=0.08x+1.23
3.[2012·商丘二模] 对于回归分析,下列说法错误的是( )
A.在回归分析中,变量间的关系若是非确定关系,那么因变量不能由自变量唯一确定
B.线性相关系数可以是正的,也可以是负的
C.在回归分析中,如果r2=1,说明x与y之间完全相关
D.样本相关系数r∈(-1,1)
4.[2012·昆明质检] 利用独立性检验来判断两个分类变量X和Y是否有关系,通过查阅下表来确定“X和Y有关系”的可信度.为了调查用电脑时间与视力下降是否有关系,现从某地网民中抽取100位居民进行调查,经过计算得K2≈3.855,那么就有________%的根据认为用电脑时间与视力下降有关系.
P(K2>k)
0.50
0.40
0.25
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
0.455
0.708
1.323
2.072
2.706
3.841
5.024
6.635
7.879
10.828
5.[2012·湖南卷] 设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是( )
A.y与x具有正的线性相关关系
B.回归直线过样本点的中心(x,y)
C.若该大学某女生身高增加1 cm,则其体重约增加0.85 kg
D.若该大学某女生身高为170 cm,则可断定其体重必为58.79 kg
6.对四组数据进行统计,获得以下散点图,关于其相关系数比较,正确的是( )
图K56-1
A.r23.841,所以判定主修统计专业与性别有关系,那么这种判断出错的可能性为________.
14.(10分)[2012·保定二模] 某空调生产部门为了提高工效,需分析该部门的产量x(台)与所用时间y(小时)之间的关系,为此做了4次统计,所得数据如下:
生产空调的台数x(台)
2
3
4
5
所用的时间y(小时)
2.5
3
4
4.5
图K56-2
(1)在所给的坐标系中画出表中数据的散点图与回归直线;
(2)求出y关于x的线性回归方程=x+,并据此预测生产10台空调需要多少时间?
参考公式:=,=y-x
15.(13分)[2012·吉林质检] 户外运动已经成为一种时尚运动,某单位为了了解员工喜欢户外运动是否与性别有关,决定从本单位全体650人中采用分层抽样的办法抽取50人进行问卷调查,得到了如下列联表:
喜欢户外运动
不喜欢户外运动
合计
男性
5
女性
10
合计
50
已知在这50人中随机抽取1人抽到喜欢户外运动的员工的概率是.
(1)请将上面的列联表补充完整;
(2)求该公司男、女员工各多少名;
(3)是否有99.5%的把握认为喜欢户外运动与性别有关?并说明你的理由.
下面的临界值表仅供参考:
P(K2≥k)
0.15
0.10
0.05
0.025
0.010
0.005
0.001
k
2.072
2.706
3.841
5.024
6.635
7.879
10.828
参考公式:K2=,其中n=a+b+c+d
16.(12分)[2012·福建卷] 某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:
单价x(元)
8
8.2
8.4
8.6
8.8
9
销量y(件)
90
84
83
80
75
68
(1)求回归直线方程=bx+a,其中b=-20,a=y-bx;
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/件,为使工厂获得最大利润,该产品的单价应定为多少元?(利润=销售收入-成本)
【点此下载】