第一章 三角函数(下)
[综合训练B组]
一、选择题
1.方程的解的个数是( )
A. B.
C. D.
2.在内,使成立的取值范围为( )
A. B.
C. D.
3.已知函数的图象关于直线对称,
则可能是( )
A. B. C. D.
4.已知是锐角三角形,
则( )
A. B. C. D.与的大小不能确定
5.如果函数的最小正周期是,
且当时取得最大值,那么( )
A. B.
C. D.
6.的值域是( )
A. B.
C. D.
二、填空题
1.已知是第二、三象限的角,则的取值范围___________。
2.函数的定义域为,
则函数的定义域为__________________________.
3.函数的单调递增区间是___________________________.
4.设,若函数在上单调递增,则的取值范围是________。
5.函数的定义域为______________________________。
三、解答题
1.(1)求函数的定义域。
(2)设,求的最大值与最小值。
2.比较大小(1);(2)。
3.判断函数的奇偶性。
4.设关于的函数的最小值为,
试确定满足的的值,并对此时的值求的最大值。
数学4(必修)第一章 三角函数(下) [综合训练B组]
一、选择题
1.C 在同一坐标系中分别作出函数的图象,左边三个交点,
右边三个交点,再加上原点,共计个
2.C 在同一坐标系中分别作出函数的图象,观察:
刚刚开始即时,;
到了中间即时,;
最后阶段即时,
3.C 对称轴经过最高点或最低点,
4.B
5.A 可以等于
6.D
二、填空题
1.
2.
3. 函数递减时,
4. 令则是函数的关于
原点对称的递增区间中范围最大的,即,
则
5.
三、解答题
1.解:(1)
得,或
(2),而是的递减区间
当时,;
当时,。
2.解:(1);
(2)
3.解:当时,有意义;而当时,无意义,
为非奇非偶函数。
4.解:令,则,对称轴,
当,即时,是函数的递增区间,;
当,即时,是函数的递减区间,
得,与矛盾;
当,即时,
得或,,此时。
【点此下载】