课时提升作业(九)
一、选择题
1.(2013·宝鸡模拟)已知m>2,点(m-1,y1),(m,y2),(m+1,y3)都在二次函数y=x2-2x的图像上,则( )
(A)y10,二次函数f(x)=ax2+bx+c的图像可能是( )
7.函数f(x)=ax2+(a-3)x+1在区间[-1,+∞)上是减少的,则实数a的取值范围是
( )
(A)[-3,0) (B)(-∞,-3]
(C)[-2,0] (D)[-3,0]
8.(2013·安庆模拟)设函数f(x)=若f(-4)=f(0),f(-2)=-2,则关于x的方程f(x)=x的解的个数是( )
(A)1 (B)2 (C)3 (D)4
9.(2013·南昌模拟)设b>0,二次函数y=ax2+bx+a2-1的图像为下列之一.
则a的值为( )
(A)1 (B)
(C)-1 (D)
10.(能力挑战题)若不等式x2+ax+1≥0对于一切x∈(0,]恒成立,则a的最小值是( )
(A)0 (B)2 (C)- (D)-3
二、填空题
11.若二次函数y=ax2+bx+c的图像与x轴交于A(-2,0),B(4,0),且函数的最大值为9,则这个二次函数的解析式是 .
12.若二次函数f(x)=(x+a)(bx+2a)(a,b∈R)是偶函数,且它的值域为(-∞,4],则该函数的解析式f(x)= .
13.(2013·上饶模拟)已知关于x的方程x2+a|x|+a2-9=0只有一个实数解,则实数a的值为 .
14.二次函数f(x)的二次项系数为正,且对任意x恒有f(2+x)=f(2-x),若f(1-2x2)2,
∴12-3=()3,
∴Q0,即ab<0,则当c<0时,abc>0.
7.【解析】选D.当a=0时,f(x)=-3x+1显然成立,
当a≠0时,需解得-3≤a<0,
综上可得-3≤a≤0.
【误区警示】本题易忽视a=0这一情况而误选A,失误的原因是将关于x的函数误认为是二次函数.
8.【解析】选C.由f(-4)=f(0),f(-2)=-2得
∴
∴f(x)=
当x≤0时,由f(x)=x得x2+4x+2=x,
解得x=-2或x=-1.
当x>0时,由f(x)=x得x=2.
故关于x的方程f(x)=x的解的个数是3个.
9.【解析】选C.由b>0知,二次函数对称轴不是y轴,结合二次函数的开口方向及对称轴位置,二次函数图像是第③个.从而a2-1=0且a<0,∴a=-1.
10.【解析】选C.方法一:设g(a)=ax+x2+1,
∵x∈(0,],∴g(a)为增加的.
当x=时满足:a++1≥0即可,解得a≥-.
方法二:由x2+ax+1≥0得a≥-(x+)在x∈(0,]上恒成立,
令g(x)=-(x+),则知g(x)在(0,]上是增加的,
∴g(x)max=g()=-,∴a≥-.
11.【解析】设y=a(x+2)(x-4),对称轴为x=1,
当x=1时,ymax=-9a=9,∴a=-1,
∴y=-(x+2)(x-4)=-x2+2x+8.
答案:y=-x2+2x+8
12.【思路点拨】化简f(x),函数f(x)为偶函数,则一次项系数为0可求b.值域为(-∞,4],则最大值为4,可求2a2,即可求出解析式.
【解析】∵f(x)=(x+a)(bx+2a)=bx2+(2a+ab)x+2a2是偶函数,则其图像关于y轴对称.
∴2a+ab=0,∴b=-2或a=0(舍去).
∴f(x)=-2x2+2a2,又f(x)的值域为(-∞,4],
∴2a2=4,f(x)=-2x2+4.
答案:-2x2+4
13.【解析】设f(x)=x2+a|x|+a2-9,
则f(-x)=(-x)2+a|-x|+a2-9
=x2+a|x|+a2-9=f(x),[
即函数f(x)是偶函数.
由题意知,f(0)=0,则a2-9=0,
∴a=3或a=-3,
经检验a=3符合题意,a=-3不合题意,故a=3.
答案:3[
14.【思路点拨】由题意知二次函数的图像开口向上,且关于直线x=2对称,则距离对称轴越远,函数值越大,依此可转化为不等式问题.
【解析】由f(2+x)=f(2-x)知x=2为对称轴,由于二次项系数为正的二次函数中距对称轴越远函数值越大,∴|1-2x2-2|<|1+2x-x2-2|,
即|2x2+1|<|x2-2x+1|,
∴2x2+1
【点此下载】