12.1 随机事件的概率
一、选择题
1.把12人平均分成两组,再从每组里任意指定正、副组长各一人,其中甲被指定为正组长的概率是( )
A. B. C. D.
解析 甲所在的小组有6人,则甲被指定正组长的概率为.
答案 B
2.加工某一零件需经过三道工序,设第一、二、三道工序的次品率分别为、、,且各道工序互不影响,则加工出来的零件的次品率为( )
A. B. C. D.
解析 加工出来的零件的次品的对立事件为零件是正品,由对立事件公式得
加工出来的零件的次品率.
答案 C
3.某种饮料每箱装6听,其中有4听合格,2听不合格,现质检人员从中随机抽取2听进行检测,则检测出至少有一听不合格饮料的概率是( )
A. B.
C. D.
解析 记4听合格的饮料分别为A1、A2、A3、A4,2听不合格的饮料分别为B1、B2,则从中随机抽取2听有(A1,A2),(A1,A3),(A1,A4),(A1,B1),(A1,B2),(A2,A3),(A2,A4),(A2,B1),(A2,B2),(A3,A4),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共15种不同取法,而至少有一听不合格饮料有(A1,B1),(A1,B2),(A2,B1),(A2,B2),(A3,B1),(A3,B2),(A4,B1),(A4,B2),(B1,B2),共9种,故所求概率为P==.
答案 B
4.某射手在一次射击中,射中10环,9环,8环的概率分别是0.20,0.30,0.10.则此射手在一次射击中不够8环的概率为( ).
A.0.40 B.0.30 C.0.60 D.0.90
解析 依题意,射中8环及以上的概率为0.20+0.30+0.10=0.60,故不够8环的概率为1-0.60=0.40.
答案 A
5.从装有3个红球、2个白球的袋中任取3个球,则所取的3个球中至少有1个白球的概率是( ).
A. B. C. D.
解析 法一 (直接法):所取3个球中至少有1个白球的取法可分为互斥的两类:两红一白有6种取法;一红两白有3种取法,而从5个球中任取3个球的取法共有10种,所以所求概率为,故选D.
法二 (间接法):至少一个白球的对立事件为所取3个球中没有白球,即只有3个红球共1种取法,故所求概率为1-=,故选D.
答案 D
6.掷一枚均匀的硬币两次,事件M:一次正面朝上,一次反面朝上;事件N:至少一次正面朝上,则下列结果正确的是( ).
A.P(M)=,P(N)= B.P(M)=,P(N)=
C.P(M)=,P(N)= D.P(M)=,P(N)=
解析 Ω={(正,正),(正,反),(反,正),(反,反)},M={(正,反),(反,正)},N={(正,正),(正,反),(反,正)},故P(M)=,P(N)=.
答案 D
7.从1,2,3,4这四个数中一次随机地取两个数,则其中一个数是另一个数的两倍的概率是( ).
A. B. C. D.
解析 采用枚举法:从1,2,3,4这四个数中一次随机取两个数,基本事件为:{1,2},{1,3},{1,4},{2,3},{2,4},{3,4},共6个,符合“一个数是另一个数的两倍”的基本事件有{1,2},{2,4},共2个,所以所求的概率为.
答案 B
二、填空题
8. 甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为_______.
答案
9.抛掷一粒骰子,观察掷出的点数,设事件A为出现奇数点,事件B为出现2点,已知P(A)=,P(B)=,则出现奇数点或2点的概率为________.
解析 因为事件A与事件B是互斥事件,所以P(A∪B)=P(A)+P(B)=+=.
答案
10.从装有大小相同的4个红球,3个白球,3个黄球的袋中,任意取出2个球,则取出的2个颜色相同的概率是________.
解析 概率P=++=.
答案
11.在△ABC中,角A、B、C所对的边分别是a、b、c,A=30°,若将一枚质地均匀的正方体骰子先后抛掷两次,所得的点数分别为a、b,则满足条件的三角形有两个解的概率是_______.
解析 要使△ABC有两个解,需满足的条件是因为A=30°,所以满足此条件的a,b的值有b=3,a=2;b=4,a=3;b=5,a=3;b=5,a=4;b=6,a=4;b=6,a=5,共6种情况,所以满足条件的三角形有两个解的概率是=.
答案
12.甲、乙两颗卫星同时监测台风,在同一时刻,甲、乙两颗卫星准确预报台风的概率分别为0.8和0.75,则在同一时刻至少有一颗卫星预报准确的概率为________.
解析 由对立事件的性质知在同一时刻至少有一颗卫星预报准确的概率为1-(1-0.8)(1-0.75)=0.95.
答案 0.95
三、解答题
13.已知7件产品中有2件次品,现逐一不放回地进行检验,直到2件次品都能被确认为止.
(1)求检验次数为3的概率;
(2)求检验次数为5的概率.
解析 (1)设“在3次检验中,前2次检验中有1次检到次品,第3次检验到次品”为事件A,则检验次数为3的概率为
P(A)=·=.
(2)记“在5次检验中,前4次检验中有1次检到次品,第5次检验到次品”为事件B,记“在5次检验中,没有检到次品”为事件C,则检验次数为5的概率为
P=P(B)+P(C)=·+=.
14.由经验得知,在人民商场付款处排队等候付款的人数及其概率如下:
排队人数
0
1
2
3
4
5人以上
概率
0.1
0.16
0.3
0.3
0.1
0.04
求:(1)至多2人排队的概率;
(2)至少2人排队的概率.
解析 记“没有人排队”为事件A,“1人排队”为事件B,“2人排队”为事件C,A、B、C彼皮互斥.
(1)记“至多2人排队”为事件E,
则P(E)=P(A+B+C)=P(A)+P(B)+P(C)=0.1+0.16+0.3=0.56.
(2)记“至少2人排队”为事件D.“少于2人排队”为事件A+B,那么事件D与事件A+B是对立事件,
则P(D)=1-P(A+B)=1-[P(A)+P(B)]=1-(0.1+0.16)=0.74.
15.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,得到红球的概率为,得到黑球或黄球的概率是,得到黄球或绿球的概率是,试求得到黑球、黄球、绿球的概率各是多少?
解析 分别记得到红球、黑球、黄球、绿球为事件A、B、C、D.由于A、B、C、D为互斥事件,根据已知得到
解得
∴得到黑球、黄球、绿球的概率各是,,.
16.甲、乙二人进行一次围棋比赛,约定先胜3局者获得这次比赛的胜利,比赛结束.假设在一局中,甲获胜的概率为0.6,乙获胜的概率为0.4,各局比赛结果相互独立.已知前2局中,甲、乙各胜1局.
(1)求再赛2局结束这次比赛的概率;
(2)求甲获得这次比赛胜利的概率.
解析 记Ai表示事件:第i局甲获胜,i=3,4,5,Bj表示事件:第j局乙获胜,j=3,4.
(1)记A表示事件:再赛2局结束比赛.
A=A3A4+B3B4.
由于各局比赛结果相互独立,故
P(A)=P(A3A4+B3B4)=P(A3A4)+P(B3B4)=P(A3)P(A4)+P(B3)P(B4)
=0.6×0.6+0.4×0.4=0.52.
(2)记B表示事件:甲获得这次比赛的胜利.
因前两局中,甲、乙各胜一局,故甲获得这次比赛的胜利当且仅当在后面的比赛中,甲先胜2局,从而
B=A3A4+B3A4A5+A3B4A5,
由于各局比赛结果相互独立,故
P(B)=P(A3A4)+P(B3A4A5)+P(A3B4A5)
=P(A3)P(A4)+P(B3)P(A4)P(A5)+P(A3)P(B4)P(A5)
=0.6×0.6+0.4×0.6×0.6+0.6×0.4×0.6=0.648.
【点此下载】