高考数学(理)一轮:一课双测A+B精练(五十一) 圆 的 方 程
1.圆(x+2)2+y2=5关于原点P(0,0)对称的圆的方程为( )
A.(x-2)2+y2=5 B.x2+(y-2)2=5
C.(x+2)2+(y+2)2=5 D.x2+(y+2)2=5
2.(2012·辽宁高考)将圆x2+y2-2x-4y+1=0平分的直线是( )
A.x+y-1=0 B.x+y+3=0
C.x-y+1=0 D.x-y+3=0
3.(2012·青岛二中期末)若圆C的半径为1,圆心在第一象限,且与直线4x-3y=0和x轴都相切,则该圆的标准方程是( )
A.(x-3)2+2=1 B.(x-2)2+(y-1)2=1
C.(x-1)2+(y-3)2=1 D.2+(y-1)2=1
4.(2012·海淀检测)点P(4,-2)与圆x2+y2=4上任一点连线的中点的轨迹方程是( )
A.(x-2)2+(y+1)2=1 B.(x-2)2+(y+1)2=4
C.(x+4)2+(y-2)2=4 D.(x+2)2+(y-1)2=1
5.(2013·杭州模拟)若圆x2+y2-2x+6y+5a=0,关于直线y=x+2b成轴对称图形,则a-b的取值范围是( )
A.(-∞,4) B.(-∞,0)
C.(-4,+∞) D.(4,+∞)
6.已知点M是直线3x+4y-2=0上的动点,点N为圆(x+1)2+(y+1)2=1上的动点,则|MN|的最小值是( )
A. B.1
C. D.
7.如果三角形三个顶点分别是O(0,0),A(0,15),B(-8,0),则它的内切圆方程为________________.
8.(2013·河南三市调研)已知圆C的圆心与抛物线y2=4x的焦点关于直线y=x对称,直线4x-3y-2=0与圆C相交于A,B两点,且|AB|=6,则圆C的方程为__________.
9.(2012·南京模拟)已知x,y满足x2+y2=1,则的最小值为________.
10.过点C(3,4)且与x轴,y轴都相切的两个圆的半径分别为r1,r2,求r1r2.
11.已知以点P为圆心的圆经过点A(-1,0)和B(3,4),线段AB的垂直平分线交圆P于点C和D,且|CD|=4.
(1)求直线CD的方程;
(2)求圆P的方程.
12.(2012·吉林摸底)已知关于x,y的方程C:x2+y2-2x-4y+m=0.
(1)当m为何值时,方程C表示圆;
(2)在(1)的条件下,若圆C与直线l:x+2y-4=0相交于M、N两点,且|MN|=,求m的值.
1.(2012·常州模拟)以双曲线-=1的右焦点为圆心且与双曲线的渐近线相切的圆的方程是( )
A.(x-)2+y2=1 B.(x-3)2+y2=3
C.(x-)2+y2=3 D.(x-3)2+y2=9
2.由直线y=x+2上的点P向圆C:(x-4)2+(y+2)2=1引切线PT(T为切点),当|PT|最小时,点P的坐标是( )
A.(-1,1) B.(0,2)
C.(-2,0) D.(1,3)
3.已知圆M过两点C(1,-1),D(-1,1),且圆心M在x+y-2=0上.
(1)求圆M的方程;
(2)设P是直线3x+4y+8=0上的动点,PA、PB是圆M的两条切线,A,B为切点,求四边形PAMB面积的最小值.
[答 题 栏]
A级
1._________ 2._________ 3._________ 4._________ 5._________ 6._________
B级
1.______ 2.______
7. __________ 8. __________ 9. __________
答 案
高考数学(理)一轮:一课双测A+B精练(五十一)
A级
1.选A 圆上任一点(x,y)关于原点对称点为(-x,-y)在圆(x+2)2+y2=5上,即(-x+2)2+(-y)2=5.即(x-2)2+y2=5.
2.选C 要使直线平分圆,只要直线经过圆的圆心即可,圆心坐标为(1,2).A,B,C,D四个选项中,只有C选项中的直线经过圆心.
3.选B 依题意设圆心C(a,1)(a>0),由圆C与直线4x-3y=0相切,得=1,解得a=2,则圆C的标准方程是(x-2)2+(y-1)2=1.
4.选A 设圆上任一点为Q(x0,y0),PQ的中点为M(x,y),则解得因为点Q在圆x2+y2=4上,所以(2x-4)2+(2y+2)2=4,即(x-2)2+(y+1)2=1.
5.选A 将圆的方程变形为(x-1)2+(y+3)2=10-5a,可知,圆心为(1,-3),且10-5a>0,即a<2.∵圆关于直线y=x+2b对称,∴圆心在直线y=x+2b上,即-3=1+2b,解得b=-2,∴a-b<4.
6.选C 圆心(-1,-1)到点M的距离的最小值为点(-1,-1)到直线的距离d==,故点N到点M的距离的最小值为d-1=.
7.解析:因为△AOB是直角三角形,所以内切圆半径为r===3,圆心坐标为(-3,3),故内切圆方程为(x+3)2+(y-3)2=9.
答案:(x+3)2+(y-3)2=9
8.解析:设所求圆的半径是R,依题意得,抛物线y2=4x的焦点坐标是(1,0),则圆C的圆心坐标是(0,1),圆心到直线4x-3y-2=0的距离d==1,则R2=d2+2=10,因此圆C的方程是x2+(y-1)2=10.
答案:x2+(y-1)2=10
9.解析:表示圆上的点P(x,y)与点Q(1,2)连线的斜率,所以的最小值是直线PQ与圆相切时的斜率.设直线PQ的方程为y-2=k(x-1)即kx-y+2-k=0.由=1得k=,结合图形可知,≥,故最小值为.
答案:
10.解:由题意知,这两个圆的圆心都在第一象限,
且在直线y=x上,故可设两圆方程为
(x-a)2+(y-a)2=a2,(x-b)2+(y-b)2=b2,
且r1=a,r2=b.由于两圆都过点C,
则(3-a)2+(4-a)2=a2,(3-b)2+(4-b)2=b2
即a2-14a+25=0,b2-14b+25=0.
则a、b是方程x2-14x+25=0的两个根.
故r1r2=ab=25.
11.解:(1)直线AB的斜率k=1,AB的中点坐标为(1,2).
则直线CD的方程为y-2=-(x-1),
即x+y-3=0.
(2)设圆心P(a,b),则由P在CD上得a+b-3=0.①
又∵直径|CD|=4,∴|PA|=2,
∴(a+1)2+b2=40.②
由①②解得或
∴圆心P(-3,6)或P(5,-2).
∴圆P的方程为(x+3)2+(y-6)2=40
或(x-5)2+(y+2)2=40.
12.解:(1)方程C可化为(x-1)2+(y-2)2=5-m,显然只要5-m>0,即m<5时方程C表示圆.
(2)因为圆C的方程为(x-1)2+(y-2)2=5-m,其中m<5,所以圆心C(1,2),半径r=,
则圆心C(1,2)到直线l:x+2y-4=0的距离为d==,
因为|MN|=,所以|MN|=,
所以5-m=2+2,
解得m=4.
B级
1.选B 双曲线的渐近线方程为x±y=0,其右焦点为(3,0),所求圆半径r==,所求圆方程为(x-3)2+y2=3.
2.选B 根据切线长、圆的半径和圆心到点P的距离的关系,可知|PT|=,故|PT|最小时,即|PC|最小,此时PC垂直于直线y=x+2,则直线PC的方程为y+2=-(x-4),即y=-x+2,联立方程解得点P的坐标为(0,2).
3.解:(1)设圆M的方程为(x-a)2+(y-b)2=r2(r>0).
根据题意,得
解得a=b=1,r=2,
故所求圆M的方程为(x-1)2+(y-1)2=4.
(2)因为四边形PAMB的面积S=S△PAM+S△PBM
=|AM|·|PA|+|BM|·|PB|,
又|AM|=|BM|=2,|PA|=|PB|,所以S=2|PA|,
而|PA|==,
即S=2.
因此要求S的最小值,只需求|PM|的最小值即可,
即在直线3x+4y+8=0上找一点P,使得|PM|的值最小,
所以|PM|min==3,所以四边形PAMB面积的最小值为S=2=2=2.
高考资源网
w。w-w*k&s%5¥u
高考资源网
w。w-w*k&s%5¥u
【点此下载】