巩固双基,提升能力 一、选择题 1.若点(a,9)在函数y=3x的图像上,则tan的值为(  ) A.0    B.    C.1    D. 解析:由题意有3a=9,则a=2,所以tan=tan=,故选D. 答案:D 2.设a=,b=,c=,则a,b,c的大小关系是(  ) A.a>c>b B.a>b>c C. c>a>b D.b>c>a 解析:构造指数函数y=x(x∈R),由该函数在定义域内单调递减可得b<c;又y=x(x∈R)与y=x(x∈R)之间有如下结论:当x>0时,有x>x,故>,∴a>c,故a>c>b. 答案:A 3.已知实数a,b满足等式a=b,下列五个关系式:①0<b<a;②a<b<0;③0<a<b;④b<a<0;⑤a=b.其中不可能成立的关系式有(  ) A.1个 B.2个 C.3个 D.4个 解析:画出函数y1=x和y2=x的图像,如图所示.  由a=b结合图像,可得a<b<0,或a>b>0,或a=b=0. 答案:B 4.(2013·济南质检)定义运算a?b=则函数f(x)=1?2x的图像大致为(  )   A.     B.     C.    D. 解析:由a?b=得f(x)=1?2x= 答案:A 5.(2013·长春质检)若x∈[-1,1]时,22x-1<ax+1恒成立,则实数a的取值范围为(  ) A.(,+∞) B.(,+∞) C.(2,+∞) D.(,+∞) 解析:由22x-1<ax+1?(2x-1)lg2<(x+1)lga?x·lg-lg(2a)<0. 设f(x)=x·lg-lg(2a),由x∈[-1,1]时,f(x)<0恒成立,得??a>为所求的范围. 答案:A 6.设f(x)=|3x-1|,c<b<a,且f(c)>f(a)>f(b),则下列关系式中一定成立的是(  ) A.3c≥3b B.3c>3b C.3c+3a>2 D.3c+3a<2 解析:画出f(x)=|3x-1|的图像(如图),  要使c<b<a,且f(c)>f(a)>f(b)成立,则有c<0,且a>0. 由y=3x的图像,可得0<3c<1<3a. ∵f(c)=1-3c, f(a)=3a-1,f(c)>f(a), ∴1-3c>3a-1,即3c+3a<2. 答案:D 二、填空题 7. 解析:  答案:-23 8.(2013·桐乡月考)函数y=ax+2 012+2 012(a>0,a≠1)的图像恒过定点__________. 解析:令x+2 012=0,则x=-2 012, 此时y=a0+2 012=1+2 012=2 013. ∴恒过定点(-2 012,2 013). 答案:(-2 012,2 013) 9.已知a=,函数f(x)=ax,若实数m,n满足f(m)>f(n),则m,n的大小关系为__________. 解析:∵a=<1, ∴f(x)=ax是递减函数. 由f(m)>f(n),得m<n. 答案:m<n 三、解答题 10.(2013·银川质检)设a>0,且a≠1,如果函数y=a2x+2ax-1在[-1,1]上的最大值为14,求a的值. 解析:y=a2x+2ax-1=(ax+1)2-2,由x∈[-1,1]知, ①当a>1时,ax∈[a-1,a],显然当ax=a, 即x=1时,ymax=(a+1)2-2, ∴(a+1)2-2=14,即a=3(a=-5舍去); ②当0<a<1时,则由x∈[-1, 1]时,得ax∈,显然ax=, 即x=-1时,ymax=2-2. ∴2-2=14. ∴a=. 综上所述,a=,或a=3. 11.(2013·南京模拟)已知函数f(x)=2x,g(x)=+2. (1)求函数g(x)的值域; (2)求满足方程f(x)-g(x)=0的x的值. 解析:(1)g(x)=+2=|x|+2, 因为|x|≥0,所以0<|x|≤1,即2<g(x)≤3. 故g(x)的值域是(2,3]. (2)由f(x)-g(x)=0,得2x--2=0. 当x≤0时,显然不满足方程. 即只有x>0时,满足2x--2=0. 整理,得(2x)2-2·2x-1=0,(2x-1)2=2,故2x=1±. 因为2x>0,所以2x=1+,即x=log2(1+). 12.已知函数f(x)=b·ax(其中a,b为常量,且a>0,a≠1)的图像经过点A(1,6),B(3,24). (1)求f(x); (2)若不等式x+x-m≥0在x∈(-∞,1]时恒成立,求实数m的取值范围. 解析:(1)把A(1,6),B(3,24)代入f(x)=b·ax,得 结合a>0,且a≠1,解得 ∴f(x)=3·2x. (2)要使x+x≥m在(-∞,1]上恒成立, 只需保证函数y=x+x在(-∞,1]上的最小值不小于m即可. ∵函数y=x+x在(-∞,1]上为减函数, ∴当x=1时,y=x+x有最小值. ∴只需m≤即可.

【点此下载】