专题10 电磁感应 1.(2013·北京房山二模,19题)矩形闭合线圈放置在水平薄板上,薄板下有两块相同的蹄形磁铁,四个磁极之间的距离相等(其间距略大于矩形线圈的宽度),如图所示,当两块磁铁匀速向右通过线圈时,线圈仍静止不动,那么线圈受到薄板的摩擦力方向和线圈中产生感应电流的方向是 A.摩擦力方向一直向左 B.摩擦力方向先向左、后向右 C.感应电流的方向一直不变 D.感应电流的方向顺时针→逆时针,共经历四次这样的变化 【答案】A 【KS5U解析】当磁铁匀速向右通过线圈时,N极靠近线圈,线圈的感应电流总要阻碍磁极的相对运动,给磁极向左的作用力,那么磁极给线圈向右的作用力,线圈静止不动,是因为受到了向左的摩擦力;当N极离开线圈,线圈的感应电流总要阻碍磁极的相对运动,给磁极向左的作用力,那么磁极给线圈向右的作用力,线圈静止不动,是因为受到了向左的摩擦力.同理可知整个过程线圈所受的摩擦力一直向左,故A正确,B错误. 从上向下看,当磁铁N极向右靠近线圈时,线圈中向上的磁场增加,感应电流的磁场向下,所以感应电流是顺时针方向,当磁铁N极向右远离线圈时,线圈中向上的磁场减小,感应电流的磁场向上,所以感应电流是逆时针方向.S极靠近时线圈时,向下的磁场增加,感应电流的磁场向上,所以感应电流逆时针方向.S极远离线圈时,向下的磁场减少,感应电流的磁场向下,所以感应电流顺时针方向.故C、D错误. 2.(2013·北京朝阳二模,18题)如图1所示,虚线MN、M′N′为一匀强磁场区域的左右边界,磁场宽度为L,方向竖直向下。边长为l的正方形闭合金属线框abcd,以初速度v0沿光滑绝缘水平面向磁场区域运动,经过一段时间线框通过了磁场区域。已知lS2 B.图2正确,且S1=S2 C.图3正确,且S3>S4 D.图3正确,且S3=S4 【答案】D 【KS5U解析】线框进入或离开磁场过程中受到的安培力,由于速度v随时间减小的越来越慢,故安培力F随时间t变化的图线应是斜率逐渐减小的曲线,完全进入磁场后做匀速运动,不受安培力作用。由动量定理可知:,又电量,得m(v2-v1)=BLq,由q=可知,进入和穿出磁场过程,磁通量的变化量相等,则进入过程通过导线框横截面积的电量等于离开过程通过导线框横截面积的电量,进入过程导线框的速度变化量等于离开过程导线框的速度变化量.由于F-t图线围成的面积表示冲量的大小,故图3正确,且S3=S4。选D。 3. (2013·北京门头沟二模,20题)一个质点运动的速度时间图象如图甲所示,任意很短时间内质点的运动可以近似视为匀速运动,该时间内质点的位移即为条形阴影区域的面积,经过累积,图线与坐标轴围成的面积即为质点在相应时间内的位移。利用这种微元累积法我们可以研究许多物理问题,图乙是某物理量随时间变化的图象,此图线与坐标轴所围成的面积,下列说法中正确的是   图甲 A.如果y轴表示作用力,则面积大于该力在相应时间内的冲量 B.如果y轴表示力做功的功率,则面积小于该力在相应时间内所做的功 C.如果y轴表示流过用电器的电流,则面积等于在相应时间内流过该用电器的电量 D.如果y轴表示变化磁场在金属线圈产生的电动势,则面积等于该磁场在相应时间内磁感应强度的变化量 【答案】C 【KS5U解析】,如果y轴表示作用力,则面积等于该力在相应时间内的冲量;如果y轴表示力做功的功率,则面积等于该力在相应时间内所做的功;如果y轴表示流过用电器的电流,则面积等于在相应时间内流过该用电器的电量;由可知,如果y轴表示变化磁场在金属线圈中产生的电动势,且匝数n=1,则面积等于该磁场在相应时间内磁通量的变化量。本题应选C。 4.(2013·北京顺义二模,20题)如图所示,水平面内有一平行金属导轨,导轨光滑且电阻不计。匀强磁场与导轨所在平面垂直。阻值为R的导体棒垂直于导轨静止放置,且与导轨接触良好。t=0时,将开关S由1掷到2。若分别用U、F、q和v表示电容器两端的电压、导体棒所受的安培力、通过导体棒的电荷量和导体棒的速度。则下列图象表示这些物理量随时间变化的关系中可能正确的是 【答案】C 【KS5U解析】开关S由1掷到2,电容器放电后会在电路中产生电流.导体棒通有电流后会受到安培力的作用,会产生加速度而加速运动.导体棒切割磁感线,速度增大,感应电动势增大,则电流减小,安培力减小,加速度减小.因导轨光滑,所以在有电流通过棒的过程中,棒是一直加速运动(变加速).由于通过棒的电流是按指数递减的,那么棒受到的安培力也是按指数递减的,由牛顿第二定律知,它的加速度是按指数递减的.由于电容器放电产生电流使得导体棒受安培力而运动,而导体棒运动产生感应电动势会给电容器充电.当充电和放电达到一种平衡时,导体棒做匀速运动.当棒匀速运动后,棒因切割磁感线有电动势,所以电容器两端的电压能稳定在某个不为0的数值,即电容器的电量应稳定在某个不为0的数值(不会减少到0).这时电容器的电压等于棒的电动势数值,棒中无电流.故本题应选C. 5.(2013·北京顺义二模,19题)如图所示,铝质的圆筒形管竖直立在水平桌面上,一条形磁铁从铝管的正上方由静止开始下落,然后从管内下落到水平桌面上。已知磁铁下落过程中不与管壁接触,不计空气阻力,下列判断正确的是 A.磁铁在整个下落过程中机械能守恒 B.磁铁在整个下落过程中动能的增加量小于重力势能的减少量 C.磁铁在整个下落过程中做自由落体运动 D.磁铁在整个下落过程中,铝管对桌面的压力小于铝管的重力 【答案】B 【KS5U解析】磁铁从静止下落过程中,由于磁通量变化,导致铝管中出现感应电流,故磁铁受到安培阻力,所以磁铁的机械能不守恒,故A错误;磁铁完全进入铝管后,感应电流消失,磁铁不再受安培力,故在磁铁的整个下落过程中,除了重力作功外,还有安培力做功,导致下落过程中减小的重力势能,部分用来增加动能,还有部分用来产生内能,故B正确C错误;由作用力与反作用力关系可得磁铁对铝管的反作用力,使得铝管对桌面的压力大于其自身的重力,但磁铁完全进入铝管中的时候,铝管对桌面的压力等于铝管的重力,故D错误;故选B。 6.(2013·北京通州二模,20题)如图1所示,固定在水平桌面上的光滑金属框架cdeg处于竖直向下的匀强磁场中,金属杆ab与金属框架接触良好。在两根导轨的端点d、e之间连接一电阻,其他部分电阻不计。现用一水平向右的外力F作用在金属杆ab上,使金属杆由静止开始向右在框架上滑动,运动中杆ab始终垂直于框架。图2为一段时间内金属杆受到的安培力f随时间t的变化关系,则图3中可以表示外力F随时间t变化关系的图象是 【答案】B 【KS5U解析】由感应电动势E=Blv,电流I=得到安培力f=BIl=,由题图2可知f∝t,则v∝t,说明导体做匀加速运动,那么v=at,根据牛顿第二定律,得F-f=ma,即F=f+ma=+ma,故选B。 7.(2013·北京东城区示范校高三综合练习,3题)如图所示,一轻质绝缘横杆两侧各固定一金属环,横杆可绕中心点自由转动,老师拿一条形磁铁插向其中一个小环,后又取出插向另一个小环,同学们看到的现象是及现象分析正确的是( ) A.磁铁插向左环,横杆发生转动 B.磁铁插向右环,横杆发生转动 C.磁铁插向左环,左环中不产生感应电动势和感应电流 D.磁铁插向右环,右环中产生感应电动势和感应电流 【答案】BD 【KS5U解析】当条形磁铁插向右环时,穿过右环的磁通量增加,右环闭合产生感应电流,磁铁对右环产生安培力,阻碍两者相对运动,横杆将转动,右环远离磁铁.当条形磁铁插向左环时,左环不闭合,不产生感应电流,磁铁对左环没有安培力作用,左环将静止不动,但左环中仍产生感应电动势。选项BD正确。 8. (2013·北京海淀一模,18题)如图3所示,通过水平绝缘传送带输送完全相同的闭合铜线圈,线圈均与传送带以相同的速度匀速运动。为了检测出个别未闭合的不合格线圈,让传送带通过一固定匀强磁场区域,磁场方向垂直于传送带平面向上,线圈进入磁场前等距离排列,穿过磁场后根据线圈间的距离,就能够检测出不合格线圈。通过观察图3,下列说法正确的是  A.从图3可以看出,第2个线圈是不闭合线圈 B.从图3可以看出,第3个线圈是不闭合线圈 C.若线圈闭合,进入磁场时线圈相对传送带向前运动 D.若线圈不闭合,进入磁场时线圈相对传送带向后运动 【答案】B 【KS5U解析】若线圈闭合,进入磁场时,由于电磁感应现象,由楞次定律可判断线圈相对传送带向后滑动,若线圈不闭合,不会产生感应电流,线圈不受安培力,故线圈相对传送带不发生滑动,由题图知第3个线圈没有发生相对滑动,则第3个线圈为不合格线圈,故ACD错误,B正确. 9. (2013·北京丰台一模,18题)如图所示一块绝缘薄圆盘可绕其中心的光滑轴自由转动,圆盘的四周固定着一圈带电的金属小球,在圆盘的中部有一个圆形线圈。实验时圆盘沿顺时针方向绕中心转动时,发现线圈中产生逆时针方向(由上向下看)的电流,则下列关于可能出现的现象的描述正确的是  A.圆盘上金属小球带负电,且转速减小 B.圆盘上金属小球带负电,且转速增加 C.圆盘上金属小球带正电,且转速不变 D.圆盘上金属小球带正电,且转速减小 【答案】A 【KS5U解析】线圈中产生逆时针方向(由上向下看)的感应电流,由右手定则可知感应电流的磁场方向向上,由楞次定律可知可能是线圈中向上的磁场减弱或向下的磁场增强的结果,若圆盘上金属小球带负电,顺时针旋转产生逆时针方向的电流,磁场方向向上,转速减小时,向上的磁场减弱,A正确B错误;同理可知若圆盘上金属小球带正电,产生顺时针方向的电流,磁场方向向下,转速增加时,向下的磁场增强,CD错误。 10. (2013·北京东城一模,20题)如图所示的甲、乙、丙图中,MN、PQ是固定在同一水平面内足够长的平行金属导轨。导体棒ab垂直放在导轨上,导轨都处于垂直水平面向下的匀强磁场中。导体棒和导轨间接触 良好且摩擦不计,导体棒、导轨和直流电源的电阻均可忽略,甲图中的电容器C原来不带 电。今给导体棒ab 一个向右的初速度v0,在甲、乙、丙图中导体棒ab在磁场中的最终运动 状态是  A. 甲、丙中,棒ab最终将以相同速度做匀速运动;乙中ab棒最终静止 B. 甲、丙中,棒ab最终将以不同速度做匀速运动;乙中ab棒最终静止 C. 甲、乙、丙中,棒ab最终均做匀速运动 D. 甲、乙、丙中,棒ab最终都静止 【答案】B 【KS5U解析】甲图中ab棒产生的感应电动势对电容器C充电,C两极板间电势差与感应电动势相同时,电路中没有电流,ab棒做向右的匀速直线运动; 乙图中导体棒在初速度作用下,切割磁感线,产生电动势,出现安培力,阻碍其向前运动,其动能转化为热能,最终会静止; 而丙图虽在初速度作用下向右运动,但却受到向左的安培力,则杆向右减速运动,然而还要向左运动.当金属杆切割磁感线产生电动势与电源的电动势相等时,电路中没有电流,所以金属杆最终处于向左的匀速直线运动. 由此得选项B正确,ACD错误。 11.(2013·北京西城一模,23题)(18分)如图1所示,两根间距为l1的平行导轨PQ和MN处于同一水平面内,左端连接一阻值为R的电阻,导轨平面处于竖直向上的匀强磁场中。一质量为m、横截面为正方形的导体棒CD垂直于导轨放置,棒到导轨左端PM的距离为l2,导体棒与导轨接触良好,不计导轨和导体棒的电阻。 (1)若CD棒固定,已知磁感应强度B的变化率随时间t的变化关系式为 ,求回路中感应电流的有效值I; (2)若CD棒不固定,棒与导轨间最大静摩擦力为fm,磁感应强度B随时间t变 化的关系式为B=kt。求从t=0到CD棒刚要运动,电阻R上产生的焦耳热Q; (3)若CD棒不固定,不计CD棒与导轨间的摩擦;磁场不随时间变化,磁感应强度为B。现对CD棒施加水平向右的外力F,使CD棒由静止开始向右以加速度a做匀加速直线运动。请在图2中定性画出外力F随时间t变化的图象,并求经过时间t0 ,外力F的冲量大小I。 【答案】见解析 【KS5U解析】(1)根据法拉第电磁感应定律 回路中的感应电动势 所以,电动势的最大值  【2分】 由闭合电路欧姆定律  【2分】 由于交变电流是正弦式的,所以  【2分】 (2)根据法拉第电磁感应定律,回路中的感应电动势 根据闭合电路欧姆定律, CD杆受到的安培力  【2分】 当CD杆将要开始运动时,满足: 【2分】 由上式解得:CD棒运动之前,产生电流的时间 所以,在时间t内回路中产生的焦耳热 【2分】 (3) CD棒切割磁感线产生的感应电动势 时刻t的感应电流 【1分】 CD棒在加速过程中,根据由牛顿第二定律  【2分】 解得: 【1分】 根据上式 可得到外力F随时间变化的图像如图所示由以上图像面积可知:经过时间t0,外力F的冲量I  解得: 【2分】 12.(2013·北京石景山一模,23题)(18分)如图所示,两条光滑的金属导轨相距L=lm,其中MN段平行于PQ段,位于同一水平面内,NN0段与QQ0段平行,位于与水平面成倾角370的斜面内,且MNN0与PQQ0均在竖直平面内。在水平导轨区域和倾斜导轨区域内分别有垂直于水平面和斜面的匀强磁场B1和B2,且B1=B2=0.5T。ab和cd是质量均为m=0.1kg、电阻均为R=4Ω的两根金属棒,ab置于水平导轨上,ab置于倾斜导轨上,均与导轨垂直且接触良好。从t=0时刻起,ab棒在外力作用下由静止开始沿水平方向向右运动(ab棒始终在水平导轨上运动,且垂直于水平导轨),cd受到 F=0.6-0.25t(N)沿斜面向上的力的作用,始终处于静止状态。不计导轨的电阻。(sin37°=0.6) (1)求流过cd棒的电流强度Icd随时间t变化的函数关系: (2)求ab棒在水平导轨上运动的速度vab随时间t变化的函数关系; (3)求从t=0时刻起,1.0s内通过ab棒的电荷量q; (4)若t=0时刻起,l.0s内作用在ab棒上的外力做功为W=16J,求这段时间内cd棒产生的焦耳热Qcd。  【答案】见解析 【KS5U解析】  13.(2013·北京海淀一模,24题)(20分)如图13所示,光滑、足够长、不计电阻、轨道间距为l的平行金属导轨MN、PQ,水平放在竖直向下的磁感应强度不同的两个相邻的匀强磁场中,左半部分为Ι匀强磁场区,磁感应强度为B1;右半部分为Ⅱ匀强磁场区,磁感应强度为B2,且B1=2B2。在Ι匀强磁场区的左边界垂直于导轨放置一质量为m、电阻为R1的金属棒a,在Ι匀强磁场区的某一位置,垂直于导轨放置另一质量也为m、电阻为R2的金属棒b。开始时b静止,给a一个向右冲量I后a、b开始运动。设运动过程中,两金属棒总是与导轨垂直。  (1)求金属棒a受到冲量后的瞬间通过金属导轨的感应电流; (2)设金属棒b在运动到Ι匀强磁场区的右边界前已经达到最大速度,求金属棒b在Ι匀强磁场区中的最大速度值; (3)金属棒b进入Ⅱ匀强磁场区后,金属棒b再次达到匀速运动状态,设这时金属棒a仍然在Ι匀强磁场区中。求金属棒b进入Ⅱ匀强磁场区后的运动过程中金属棒a、b中产生的总焦耳热。 【答案】见解析 【KS5U解析】(1)设金属棒a受到冲量I时的速度为v0,金属棒a产生的感应电动势为E,金属轨道中的电流为i,则 I=mv0………………………………………………1分 E=B1lv0………………………………………………1分 i=………………………………………………1分 i=………………………………………………1分 (2)金属棒a和金属棒b在左部分磁场中运动过程中所受安培力大小相等、方向相反,合力为零,故a、b组成的,水平方向动量守恒。 金属棒a和金属棒b在Ι匀强磁场区中运动过程中达到的最大速度vm时,二金属棒速度相等,感应电流为零,二金属棒匀速运动,根据动量守恒定律有 mv0=2mvm………………………………………………2分 vm=………………………………………………2分 (3)金属棒b进入Ⅱ匀强磁场时,设金属棒a的感应电动势为E1,金属棒b的感应电动势为E2, E1=B1lvm E2=B2lvm 因为 B1=2 B2 所以 E1=2 E2………………………………………………2分 所以,金属棒b一进入Ⅱ匀强磁场,电流立即出现,在安培力作用下金属棒a做减速运动,金属棒b做加速运动。设金属棒a在Ι匀强磁场区运动速度从vm变化到最小速度va,所用时间为t,金属棒b在Ⅱ匀强磁场区运动速度从vm变化到最大速度为vb,所用时间也为t,此后金属棒a、b都匀速运动,则 B1lva= B2lvb………………………………………………3分 即 vb=2va………………………………………………1分 设在t时间内通过金属棒a、b的电流平均值为 根据动量定理有 B1lt=mva-mvm 方向向左………………………………………………1分 B2lt=mvb-mvm 方向向右………………………………………………1分 解得:………………………………………………1分 ………………………………………………1分 设金属棒b进入Ⅱ匀强磁场后,金属棒a、b产生的总焦耳热为Q,根据能量守恒,有 ……………………………………1分 Q=……………………………………1分 14.(2013·北京丰台一模,24题)(20分) 如图所示,竖直平面内有一半径为r、内阻为R1、粗细均匀的光滑半圆形金属环,在M、N处与相距为2r、电阻不计的平行光滑金属轨道ME、NF相接,EF之间接有电阻R2,已知R1=12R,R2=4R。在MN上方及CD下方有水平方向的匀强磁场I和II,磁感应强度大小均为B。现有质量为m、电阻不计的导体棒ab,从半圆环的最高点A处由静止下落,在下落过程中导体棒始终保持水平,与半圆形金属环及轨道接触良好,两平行轨道中够长。已知导体棒ab下落r/2时的速度大小为v1,下落到MN处的速度大小为v2。  (1)求导体棒ab从A下落r/2时的加速度大小。 (2)若导体棒ab进入磁场II后棒中电流大小始终不变,求磁场I和II之间的距离h和R2上的电功率P2。 (3)当导体棒进入磁场II时,施加一竖直向上的恒定外力F=mg的作用,求导体棒ab从开始进入磁场II到停止运动所通过的距离和电阻R2上所产生的热量。 【答案】见解析 【KS5U解析】(1)(6分)以导体棒为研究对象,棒在磁场I中切割磁感线,棒中产生产生感应电动势,导体棒ab从A下落r/2时,导体棒在重力与安培力作用下做加速运动, 由牛顿第二定律,得 ①(1分) 式中 ②(1分)  ③(1分) =4R ④(2分) 由以上各式可得到  ⑤(1分) (2)(8分)当导体棒ab通过磁场II时,若安培力恰好等于重力,棒中电流大小始终不变,即, ⑥(1分)  ⑦(1分) (或) 式中   ⑧(1分) 解得  ⑨(2分) 导体棒从MN到CD做加速度为g的匀加速直线运动,有  ⑩ (1分) 得   (2分) (3)(6分)由动量定理得   (1分) 即  即 (1分) 联立⑨解得 (1分) 停下来过程中重力做正功、外力F和安培力做负功,由动能定理有  所以产生总热量为  (1分) 在电阻R2上产生的热量为 (1分) 联立⑨解得: (1分) 15. (2013·北京丰台二模,22题)(16分) 如图所示,处于匀强磁场中的两根足够长、电阻不计的平行金属导轨相距了 1 m,导轨平面与水平面成θ = 37°角,下端连接阻值为R=2Ω的电阻。磁场方向垂直导轨平面向上,磁感应强度为0.4T。质量为0.2kg、电阻不计的金属棒放在两导轨上,棒与导轨垂直并保持良好接触,它们之间的动摩擦因数为0.25。金属棒沿导轨由静止开始下滑。(g=10m/s2,sin37°=0.6,cos37°=0.8)  (1) 判断金属棒下滑过程中产生的感应电流方向; (2) 求金属棒下滑速度达到5m/s时的加速度大小; (3) 当金属棒下滑速度达到稳定时,求电阻R消耗的功率。 【答案】见解析 【KS5U解析】(1) 由右手定则判断金属棒中的感应电流方向为由a到b ……(2分) (2) 金属棒下滑速度达到5m/s时产生的 感应电动势为V = 2V ……(2分) 感应电流为 A = 1A ……(1分) 金属棒受到的安培力为 N = 0.4 N ……(2分) 由牛顿第二定律得: ……(2分) 解得:a = 2m/s2 ……(1分) (3) 设金属棒运动达到稳定时,所受安培力为F/,棒在沿导轨方向受力平衡  ……(2分) 解得: 0.8 N 此时感应电流为A = 2A ……(2分) 电路中电阻R消耗的电功率:W = 8W ……(2分) (另解:由,解得稳定时速度达到最大值m/s,本题克服安培力做功功率等于电阻R消耗的电功率,所以W=8W)

【点此下载】